The GPML Toolbox version 3.4

Carl Edward Rasmussen & Hannes Nickisch

August 14, 2014

Abstract

The GPML toolbox is an Octave 3.2.x and Matlab 7.x implementation of inference and pre-
diction in Gaussian process (GP) models. It implements algorithms discussed in Rasmussen &
Williams: | Gaussian Processes for Machine Learning | the MIT press, 2006 and Nickisch &
Rasmussen: | Approximations for Binary Gaussian Process Classification ; JMLR, 2008.

The strength of the function lies in its flexibility, simplicity and extensibility. The func-
tion is flexible as firstly it allows specification of the properties of the GP through definition of
mean function and covariance functions. Secondly, it allows specification of different inference
procedures, such as e.g. exact inference and Expectation Propagation (EP). Thirdly it allows
specification of likelihood functions e.g. Gaussian or Laplace (for regression) and e.g. cumula-
tive Logistic (for classification). Simplicity is achieved through a single function and compact
code. Extensibility is ensured by modular design allowing for easy addition of extension for the
already fairly extensive libraries for inference methods, mean functions, covariance functions and
likelihood functions.

This document is a technical manual for a developer containing many details. If you are not
yet familiar with the GPML toolbox, the | user documentation |and examples therein are a better
way to get started.


http://gaussianprocess.org/gpml/
http://www.jmlr.org/papers/volume9/nickisch08a/nickisch08a.pdf
http://gaussianprocess.org/gpml/code/
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1 Gaussian Process Training and Prediction

The gpml toolbox contains a single user function gp described in section [2| In addition there are a
number of supporting structures and functions which the user needs to know about, as well as an
internal convention for representing the posterior distribution, which may not be of direct interest
to the casual user.

Inference Methods An inference method is a function which computes the (approximate) posterior,
the (approximate) negative log marginal likelihood and its partial derivatives w.r.t.. the hy-
perparameters, given a model specification (i.e., GP mean and covariance functions and a
likelihood function) and a data set. Inference methods are discussed in section New in-
ference methods require a function providing the desired inference functionality and possibly
extra functionality in the likelihood functions applicable.

Hyperparameters The hyperparameters is a struct controlling the properties of the model, i.e.. the
GP mean and covariance function and the likelihood function. The hyperparameters is a struct
with the three fields mean, cov and 1lik, each of which is a vector. The number of elements
in each field must agree with number of hyperparameters in the specification of the three
functions they control (below). If a field has no entries it can either be empty or non-existent.

Likelihood Functions The likelihood function specifies the form of the likelihood of the GP model
and computes terms needed for prediction and inference. For inference, the required prop-
erties of the likelihood depend on the inference method, including properties necessary for
hyperparameter learning, section [4]

Mean Functions The mean function is a cell array specifying the GP mean. It computes the mean
and its derivatives w.r.t.. the part of the hyperparameters pertaining to the mean. The cell
array allows flexible specification and composition of mean functions, discussed in section
The default is the zero function.

Covariance Functions The covariance function is a cell array specifying the GP covariance function.
It computes the covariance and its derivatives w.r.t.. the part of the hyperparameters pertaining
to the covariance function. The cell array allows flexible specification and composition of
covariance functions, discussed in section [6]

Inference methods, see section (3] compute (among other things) an approximation to the posterior
distribution of the latent variables f; associated with the training cases, i = 1,...,n. This approx-
imate posterior is assumed to be Gaussian, and is communicated via a struct post with the fields
post.alpha, post.sW and post.L. Often, starting from the Gaussian prior p(f) = N(flm, K) the
approximate posterior admits the form

qflD) = N(flu=m+Ka, V=(K'+W)™ '), where W diagonal with Wi =si. (1)

In such cases, the entire posterior can be computed from the two vectors post.alpha and post.sW;
the inference method may optionally also return L = chol(diag(s)K diag(s) + I).

If on the other hand the posterior doesn’t admit the above form, then post.L returns the matrix
L=—(K+WH~! (and post.sW is unused). In addition, a sparse representation of the posterior
may be used, in which case the non-zero elements of the post.alpha vector indicate the active
entries.



2 The gp Function

The gp function is typically the only function the user would directly call.

(gp.m E

1 function [varargout] = gp(hyp, inf, mean, cov, lik, x, y, Xs, ys)

2 {gp function help @

3 (initializations [5b)

4 (inference

5 if nargin==7 % if no test cases are provided
6 varargout = {nlZ, dnlZ, post}; % report -log marg lik, derivatives and post
7 else

8 (compute test predictions

9 end

It offers facilities for training the hyperparameters of a GP model as well as predictions at unseen
inputs as detailed in the following help.

gp function help @E

—~

1 % Gaussian Process inference and prediction. The gp function provides a

2 % flexible framework for Bayesian inference and prediction with Gaussian

3 % processes for scalar targets, i.e. both regression and binary

4 % classification. The prior is Gaussian process, defined through specification
5 % of its mean and covariance function. The likelihood function is also

6 % specified. Both the prior and the likelihood may have hyperparameters

7 % associated with them.

8 %

9 % Two modes are possible: training or prediction: if no test cases are

10 % supplied, then the negative log marginal likelihood and its partial

11 % derivatives w.r.t. the hyperparameters is computed; this mode is used to fit
12 7, the hyperparameters. If test cases are given, then the test set predictive
13 % probabilities are returned. Usage:

14 9%

15 % training: [nlZ dnlZ ] = gp(hyp, inf, mean, cov, lik, x, y);

16 % prediction: [ymu ys2 fmu fs2 ] = gp(hyp, inf, mean, cov, lik, x, y, xs);
17 % or: [ymu ys2 fmu fs2 1p] = gp(hyp, inf, mean, cov, lik, x, y, xs, ys);
18 %

19 % where:

20 %

21 % hyp column vector of hyperparameters

22 % inf function specifying the inference method

23 % cov prior covariance function (see below)

24 % mean prior mean function

25 % lik likelihood function

26 % X n by D matrix of training inputs

27 % y column vector of length n of training targets

28 % XS ns by D matrix of test inputs

29 % ys column vector of length nn of test targets

30 %

31 % nlz returned value of the negative log marginal likelihood

32 % dnlZ column vector of partial derivatives of the negative

33 % log marginal likelihood w.r.t. each hyperparameter

34 % ymu column vector (of length ns) of predictive output means

35 % ys2 column vector (of length ns) of predictive output variances

36 % fmu column vector (of length ns) of predictive latent means

37 % fs2 column vector (of length ns) of predictive latent variances

38 % 1p column vector (of length ns) of log predictive probabilities
39 %



40 % post struct representation of the (approximate) posterior

41 % 3rd output in training mode or 6th output in prediction mode

12 % can be reused in prediction mode gp(.., cov, lik, x, post, xs,..)
43 %

44 % See also covFunctions.m, infMethods.m, likFunctions.m, meanFunctions.m.

45 %

46 (gpml copyright

Ba  (gpml copyright pa))= (4]0 [0l [16][19] [20][32][33][35] 38
1 % Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2014-08-14.
2 % File automatically generated using noweb.

Depending on the number of input parameters, gp knows whether it is operated in training or
in prediction mode. The highlevel structure of the code is as follows. After some initialisations,
we perform inference and decide whether test set predictions are needed or only the result of the
inference is demanded.

GO (initializations [pb)= (a)
1 (minimalist usage

2 (process input arguments [5d)
3 (check hyperparameters [6a))

If the number of input arguments is incorrect, we echo a minimalist usage and return.

BEd (minimalist usage [5c)= (5b)
1 if nargin<7 || nargin>9
2 disp(’Usage: [nlZ dnlZ ] = gp(hyp, inf, mean, cov, lik, x, y);’)

3 disp(’ or: [ymu ys2 fmu fs2 ] = gp(hyp, inf, mean, cov, lik, x, y, xs);’)

4 disp(’ or: [ymu ys2 fmu fs2 1p] gp (hyp, inf, mean, cov, lik, x, y, xs, ys);’)
5

6

return
end

Set some useful default values for empty arguments, and convert inf and 1lik to function handles
and mean and cov to cell arrays if necessary. Initialize variables.

(process input arguments [5d)= (5b)
1 if isempty(mean), mean = {@meanZero}; end % set default mean
2 if ischar(mean) || isa(mean, ’function_handle’), mean = {mean}; end J, make cell
3 if isempty(cov), error(’Covariance function cannot be empty’); end 7 no default
4 if ischar(cov) || isa(cov, ’function_handle’), cov = {cov}; end Y% make cell
5 covl = covq{1l}; if isa(covl, ’function_handle’), covl = func2str(covl); end
6 if strcmp(covl,’covFITC’) && isfield(hyp,’xu’), cov{3} = hyp.xu; end %use hyp.xu
7 if isempty (inf) % set default inference method
8 if strcmp(covl,’covFITC?), inf = Q@infFITC; else inf = @infExact; end
9 else
10 if iscell(inf), inf = inf{1}; end % cell input is allowed
11 if ischar(inf), inf = str2func(inf); end % convert into function handle
12 end
13 if strcmp(covl,’covFITC?) % only infFITC* are possible
14 if isempty(strfind(func2str(inf),’infFITC’)==1)
15 error (’Only infFITC#* are possible inference algorithms?)
16 end
17 end % only one possible class of inference algorithms
18 if isempty(lik), 1lik = {@likGauss}; end % set default lik
19 if ischar(1lik) || isa(lik, ’function_handle?’), 1lik = {1lik}; end ¥ make cell

20 if iscell(lik), likstr = 1ik{1}; else likstr = 1lik; end
21 if “ischar(likstr), likstr = func2str(likstr); end

22

23 D = size(x,2);



Check that the sizes of the hyperparameters supplied in hyp match the sizes expected. The three
parts hyp.mean, hyp.cov and hyp.lik are checked separately, and define empty entries if they don’t
exist.

(check hyperparameters @E (5b)

1 if “isfield(hyp,’mean’), hyp.mean = []; end % check the hyp specification
2 if eval(feval(mean{:})) “= numel(hyp.mean)

3 error (’Number of mean function hyperparameters disagree with mean function?’)
4 end

5 if ~isfield(hyp,’cov’), hyp.cov = []; end

6 if eval(feval(cov{:})) ~= numel(hyp.cov)

7 error (’Number of cov function hyperparameters disagree with cov function’)

& end

9 if “isfield(hyp,’1lik’), hyp.lik = []; end

10 if eval(feval(lik{:})) ~= numel (hyp.1lik)

11 error (’Number of 1lik function hyperparameters disagree with lik function’)
12 end

Inference is performed by calling the desired inference method inf. In training mode, we accept
a failure of the inference method (and issue a warning), since during hyperparameter learning,
hyperparameters causing a numerical failure may be attempted, but the minimize function may
gracefully recover from this. During prediction, failure of the inference method is an error.

(inference [6b)=

1 try % call the inference method

2 % issue a warning if a classification likelihood is used in conjunction with
3 % labels different from +1 and -1
4 if strcmp(likstr,’likErf’) || strcmp(likstr,’likLogistic?)
5 if “isstruct(y)
6 uy = unique(y);
7 if any( uy™=+1 & uy~=-1 )
8 warning (’You try classification with labels different from {+1,-13}’)
9 end
10 end
11 end
12 if nargin>7 % compute marginal likelihood and its derivatives only if needed
13 if isstruct(y)
14 post = y; % reuse a previously computed posterior approximation
15 else
16 post = inf (hyp, mean, cov, lik, x, y);
17 end
18 else
19 if nargout<=1
20 [post nlZ] = inf(hyp, mean, cov, lik, x, y); dnlZ = {};
21 else
22 [post nlZ dnlZ] = inf(hyp, mean, cov, lik, x, y);
23 end
24 end
25 catch
26  msgstr = lasterr;
27 if nargin > 7, error(’Inference method failed [%s]’, msgstr); else
28 warning (’Inference method failed [%s] .. attempting to continue’,msgstr)
29 dnlZ = struct(’cov’,0*hyp.cov, ’mean’,O*hyp.mean, ’1lik’,0xhyp.1lik);
30 varargout = {NaN, dnlZ}; return % continue with a warning
31 end
32 end

We copy the already computed negative log marginal likelihood to the first output argument, and if



desired report its partial derivatives w.r.t. the hyperparameters if running in inference mode.

Predictions are computed in a loop over small batches to avoid memory problems for very large test
sets.

(compute test predictions [ra)= (a)

1 alpha = post.alpha; L = post.L; sW = post.sW;

2 if issparse(alpha) % handle things for sparse representations
3 nz = alpha "= 0; % determine nonzero indices
4 if issparse(L), L = full(L(nz,nz)); end % convert L and sW if necessary
5 if issparse(sW), sW = full(sW(nz)); end

6 else nz = true(size(alpha,1),1); end % non-sparse representation
7 if numel(L)== % in case L is not provided, we compute it
8 K = feval(cov{:}, hyp.cov, x(nz,:));

9 L = chol(eye(sum(nz))+sW*sW’.*K);

10 end

11 Lchol = all(all(tril(L,-1)==0)&diag(L)’>0)&isreal(diag(L)); % L contains chol?
12 ns = size(xs,1); % number of data points
13 nperbatch = 1000; % number of data points per mini batch
14 nact = 0; % number of already processed test data points
15 ymu = zeros(ns,1); ys2 = ymu; fmu = ymu; fs2 = ymu; lp = ymu; % allocate mem
16 while nact<ns % process minibatches of test cases to save memory
17 id = (nact+1):min(nact+nperbatch,ns); % data points to process
18 (make predictions

19  nact = id(end); % set counter to index of last processed data point
20 end

21 if nargin<9

22 varargout = {ymu, ys2, fmu, fs2, [], post}; % assign output arguments
23 else
24 varargout = {ymu, ys2, fmu, fs2, lp, post};
25 end

In every iteration of the above loop, we compute the predictions for all test points of the batch.

(make predictions E (72l

1 kss = feval(cov{:}, hyp.cov, xs(id,:), ’diag’); % self-variance
2 if strcmp(covl,’covFITC?) % cross-covariances
3 Ks = feval(cov{:}, hyp.cov, x, xs(id,:)); Ks = Ks(nz,:); ) res indep. of x
4 else

5 Ks = feval(cov{:}, hyp.cov, x(nz,:), xs(id,:)); % avoid computation
6 end

7 ms = feval(mean{:}, hyp.mean, xs(id,:));

8 N = size(alpha,2); 7% number of alphas (usually 1; more in case of sampling)
9 Fmu = repmat(ms,1,N) + Ks’*full(alpha(nz,:)); % conditional mean fs|f
10 fmu(id) = sum(Fmu,2)/N; % predictive means
11 if Lchol % L contains chol decomp => use Cholesky parameters (alpha,sW,L)
12 V = L’\(repmat(sW,1,length(id)).*Ks);

13 £fs2(id) = kss - sum(V.x*V,1)7; % predictive variances
14 else % L is not triangular => use alternative parametrisation
15 £fs2(id) = kss + sum(Ks.*(L*Ks),1)’; % predictive variances
16 end

17 £82(id) = max(fs2(id),0); % remove numerical noise i.e. negative variances
18 Fs2 = repmat(fs2(id),1,N); % we have multiple values in case of sampling
19 if nargin<9

20 [Lp, Ymu, Ys2] = feval(lik{:},hyp.lik,[],Fmu(:),Fs2(:));

21 else

22 Ys = repmat(ys(id),1,N);

23 [Lp, Ymu, Ys2] = feval(lik{:},hyp.lik,¥s(:),Fmu(:),Fs2(:));
24 end



25 1p(id) = sum(reshape(Lp, []1,N),2)/N; % log probability; sample averaging
26 ymu(id) sum(reshape (Ymu, [1,N),2)/N; % predictive mean ys|y and
27 ys2(id) sum(reshape(Ys2,[]1,N),2)/N; % .. variance



3 Inference Methods

Inference methods are responsible for computing the (approximate) posterior post, the (approxi-
mate) negative log marginal likelihood nlZ and its partial derivatives dnlZ w.r.t. the hyperparame-
ters hyp. The arguments to the function are hyperparameters hyp, mean function mean, covariance
function cov, likelihood function 1lik and training data x and y. Several inference methods are
implemented and described this section.

(infMethods.m o) =

1 % Inference methods: Compute the (approximate) posterior for a Gaussian process.
2 % Methods currently implemented include:

3 h

4 % infExact Exact inference (only possible with Gaussian likelihood)
5% infLaplace Laplace’s Approximation

6 % infEP Expectation Propagation

7% infVB Variational Bayes Approximation

8 % infKL Kullback-Leibler optimal Approximation

9 %

10 % infFITC Large scale regression with approximate covariance matrix
11 % infFITC_Laplace Large scale inference with approximate covariance matrix
12 % infFITC_EP Large scale inference with approximate covariance matrix
13 %

14 7% infMCMC Markov Chain Monte Carlo and Annealed Importance Sampling

15 % We offer two samplers.

16 % - hmc: Hybrid Monte Carlo

17 % - ess: Elliptical Slice Sampling

18 % No derivatives w.r.t. to hyperparameters are provided.

19 %

20 % infL0O Leave-0One-0ut predictive probability and Least-Squares Approxim.
21 %

22 7% The interface to the approximation methods is the following:

24 % function [post nlZ dnlZ] = inf..(hyp, cov, lik, x, y)

25 %

26 % where:

27 %

28 % hyp is a struct of hyperparameters

29 % cov is the name of the covariance function (see covFunctions.m)

30 % lik is the name of the likelihood function (see likFunctions.m)

31 % b4 is a n by D matrix of training inputs

2% y is a (column) vector (of size n) of targets

33 %

34 % nlz is the returned value of the negative log marginal likelihood
35 % dnlZ is a (column) vector of partial derivatives of the negative

36 % log marginal likelihood w.r.t. each hyperparameter

37 % post struct representation of the (approximate) posterior containing
38 % alpha is a (sparse or full column vector) containing inv(K)*(mu-m),
39 % where K is the prior covariance matrix, m the prior mean,

40 % and mu the approx posterior mean

41 % sW is a (sparse or full column) vector containing diagonal of sqrt (W)
42 9 the approximate posterior covariance matrix is inv(inv(K)+W)
43 % L is a (sparse or full) matrix, L = chol(sW*KxsW+eye(n))

44 %

45 % Usually, the approximate posterior to be returned admits the form
46 % N(mu=m+K*alpha, V=inv(inv(K)+W)), where alpha is a vector and W is diagonal;
47 % if not, then L contains instead -inv(K+inv(W)), and sW is unused.

48 %



49
50
o1
52

% For more information on the individual approximation methods and their
% implementations, see the separate inf??.m files. See also gp.m

b

(gpml copyright

Not all inference methods are compatible with all likelihood functions, e.g.. exact inference is only
possible with Gaussian likelihood. In order to perform inference, each method needs various prop-
erties of the likelihood functions, section []

3.1 Exact Inference

For Gaussian likelihoods, GP inference reduces to computing mean and covariance of a multivariate
Gaussian which can be done exactly by simple matrix algebra. The program inf/infExact.m does
exactly this. If it is called with a likelihood function other than the Gaussian, it issues an error.
The Gaussian posterior q(f|D) = N(flu, V) is exact.

(inf/infExact.m [10) =

1
2
3
4
b}
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

function [post nlZ dnlZ] = infExact(hyp, mean, cov, 1lik, x, y)

% Exact inference for a GP with Gaussian likelihood. Compute a parametrization
% of the posterior, the negative log marginal likelihood and its derivatives

% w.r.t. the hyperparameters. See also "help infMethods".

h

(gpml copyright

h

% See also INFMETHODS.M.

if iscell(lik), likstr = 1ik{1}; else likstr = 1lik; end

if “ischar(likstr), likstr = func2str(likstr); end

if “strcmp(likstr,’likGauss’) % NOTE: no explicit call to likGauss
error (’Exact inference only possible with Gaussian likelihood’);

end

[n, D] = size(x);

K = feval(cov{:}, hyp.cov, x); % evaluate covariance matrix
m = feval (mean{:}, hyp.mean, x); % evaluate mean vector
sn2 = exp(2*hyp.lik); % noise variance of likGauss
if sn2<1le-6 % very tiny sn2 can lead to numerical trouble
L = chol(K+sn2*eye(n)); sl = 1; % Cholesky factor of covariance with noise
pL = -solve_chol(L,eye(n)); % L = -inv(K+inv(sW~2))
else
L = chol(K/sn2+eye(n)); sl = sn2; % Cholesky factor of B
pL = L; % L = chol(eye(n)+sW*sW’.*K)
end
alpha = solve_chol(L,y-m)/sl;
post.alpha = alpha; % return the posterior parameters
post.sW = ones(n,1)/sqrt(sn2); % sqrt of noise precision vector
post.L = pL;
if nargout>1 % do we want the marginal likelihood?
nlZ = (y-m)’*alpha/2 + sum(log(diag(L))) + n*log(2xpi*sl)/2; % -log marg lik
if nargout>2 % do we want derivatives?
dnlZ = hyp; % allocate space for derivatives
Q@ = solve_chol(L,eye(n))/sl - alphaxalpha’; % precompute for convenience

for i = 1:numel (hyp.cov)

10



41 dnlZ.cov(i) = sum(sum(Q.*feval(cov{:}, hyp.cov, x, [1, 1)))/2;
12 end

13 dnlZ.lik = sn2*trace(Q);

14 for i = 1:numel(hyp.mean),

45 dnlZ.mean(i) = -feval(mean{:}, hyp.mean, x, i)’*alpha;
46 end

17 end

18 end

3.2 Laplace’s Approximation

For differentiable likelihoods, Laplace’s approximation, approximates the posterior by a Gaussian
centered at its mode and matching its curvature inf/infLaplace.m.

More concretely, the mean of the posterior q(f|D) = N(flu, V) is — defining ¢; (f;) = Inp(yilfi) and
0(f) = 3 X, ti(fi) — given by

b = axgmin o(£), where ¢(f) = o(f—m) K (f—m) — ¢(f) £ ~Wp[p(yit),  (2)

affT -
serves as precision for the Gaussian posterior approximation V = (K~! + W)~! and the marginal
likelihood Z = [ p(f)p(ylf)df is approximated by Z ~ ZyA = [ &(f)df where we use the 2nd order
Taylor expansion at the mode p given by ¢(f) = d(u) + %(f W TVHE— ) =~ $(f).

which we abbreviate by pu < £(£). The curvature &2 = K~ + W with Wj; = aa—;;,lnp(yilfi)

Laplace’s approximation needs derivatives up to third order for the mode fitting procedure (Newton
method)

k
dk = afk Ing(UH) k:0717273
and
dy = o 0" 1 (ylf), k=0,1,2
k = a afk ogply — YL

evaluated at the latent location f and observed value y. The likelihood calls (see section
e [dO, d1, d2, d43] = lik(hyp, y, £, [1, ’inflLaplace’)

and
e [dO, d1, d2] = lik(hyp, vy, f, [J, ’inflLaplace’, i)

return exactly these values.

3.3 Expectation Propagation

The basic idea of Expectation Propagation (EP) as implemented in inf/infEP.m. is to replace the
non-Gaussian likelihood terms p(yilfi) by Gaussian functions t(fi;vi, Ti) = exp(vifi — %Tif%) and
to adjust the natural parameters vi, i such that the following identity holds:
1 Kk 1 k

>— [ g—i(f) - t{f; v, T)df = —— | Foq—i(f) - pyalf)df, k=1,2

Zt,i Zpai
with the so-called cavity distributions q_i(f) = N(flm, K) ]_[j;,éi t(f5; vy, 15) o« N(flu, V) /t(fi;vi, 1)
equal to the posterior divided by the ith Gaussian approximation function and the two normalisers

11



Zi = [q_i(f) - t(fi;vi, 1)df and Zp 1 = [ q—i(f) - p(yilfi)df. The moment matching corresponds
to minimising the following local KL-divergence

vi, Ty = argmin KL[q_i (f)p(yilfi)/Zp illq—i (F)t(fi; v, T)/Z 1)

v,T
In order to apply the moment matching steps in a numerically safe way, EP requires the deriviatives
of the expectations w.r.t. the Gaussian mean parameter p
ok 9
de = —1Io f)N(flu, o*)df, k=0,1,2
= o 08 | PUIONGI 071, ke =0,1

and the ith likelihood hyperparameter p;

d =

0 2
2 tog [ plylfINu, 0%)a

which can be obtained by the likelihood calls (see section
e [d0, d1, d2] = lik(hyp, y, mu, s2, ’infEP?’)
and

e d = lik(hyp, y, mu, s2, ’infEP’, i).

3.4 Kullback Leibler Divergence Minimisation

Another well known approach to approximate inference implemented inf/infKL.m in attempts to
directly find the closest Gaussian q(f|D) = N(f|u, V) to the exact posterior p(f|D) w.r.t. to some
proximity measure or equivalently to maximise a lower bound Z(u, V) to the marginal likelihood Z
as described in Nickisch & Rasmussen |[Approximations for Binary Gaussian Process Classification),
JMLR, 2008. In particular, one minimises KL (N(flu, V)|[p(f|D)) which amounts to minimising
—1InZ(u,V) as defined by:

p(f)

L@ P D

—Inz = —Ian(f)p(y|f)df:—an (fID)——=
Jensen q(f|D)
< [amm e

= KL (N(fl, V)IN(fm, K)) ZJ (Filute,vie) In plyilf)dfy, vig = Vg

[ ate)tuptyinar = —tu zgu,v)

(m—m) K ' (u—m)— > " (ug,vii)
i=1

1
= 5 (tr(VK™' —=1) —In[VK™}|) +

N | —

where €55 (1) = [ N(filpi, vii)€i (f1)df; is the convolution of the log likelihood ¢; with the Gaussian
N and v = dg(V). Equivalently, one can view €X' as a smoothed version of ¢ with univariate
smoothing kernel N.

From Challis & Barber Concave Gaussian Variational Approximations for Inference in Large Scale
Bayesian Linear Models, AISTATS, 2011 we know that the mapping (u,L) — —InZ(u,LTL) is
jointly convex whenever the likelihoods f; — P(yilfi) are log concave. In particular, this implies
that every (pi, /vii) — €8T (i, vi1) s jointly convex.

We use an optimisation algorithm similar to EP (section where we minimise the local KL-
divergence the other way round pi,/Vvi; = argming ¢ KLIN(flug, vii)llq—i(f)p(yilfi)/Zp:]. This
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view was brought forward by Tom Minka |Convex Divergence measures and message passing, MSR-
TR, 2005. The KL minimisation constitutes a jointly convex 2d optimisation problem solved by
klmin using a scaled Newton approach which is included as a sub function in inf/infKL.m. The
smoothed likelihood €¥%(pui,vii) is implemented as a meta likelihood in 1ikKL; it uses Gaussian-
Hermite quadrature to compute the required integrals. Note that — as opposed to EP — Gaussian-
Hermite quadrature is appropriate since we integrate against the InP(yi|f;) (which can be well
approximated by a polynomial) instead of P(y;|fi) itself. The algorithm is — again unlike EP — prov-
ably convergent for log-concave likelihoods (e.g. 1ikGauss, likLaplace, likSech2, likLogistic,
likPoisson) since it can be regarded as coordinate descent with guaranteed decrease in the objective
in every step. Due to the complex update computations, infKL can be quite slow although it has
the same O(n3) asymptotic complexity as EP and Laplace.

3.5 Variational Bayes

One can drive the bounding even further by means of local quadratic lower bounds to the log
likelihood £(f) = Inp(ylf). Suppose that we use a super-Gaussian likelihood p(ylf) i.e. likelihoods
that can be lower bounded by Gaussians of any width w (e.g. likLaplace, 1ikT, likLogistic,
likSech?2). Formally, that means that there are b,z € R such that

p(f) =Inp(ylf —z) — bf

is symmetric and v/f — p(f) is a convex function for all f > 0. As a result, we obtain the following
exact representation of the likelihood
wf? 1
(f) =1 f) = b f—————h
(1) = tapuit) = ma ((0-+we)t— 20— Tniy)).

which can be derived by convex duality and assuming the likelihoods to be super-Gaussian. Details
can be found in papers by Palmer et al. Variational EM Algorithms for Non-Gaussian Latent Variable
Models, NIPS, 2006 and Nickisch & Seeger [(Convex Variational Bayesian Inference for Large Scale
Generalized Linear Models, ICML, 2009.

The bottom line is that we can treat the variational bounding as a sequence of Laplace approxima-
tions with the “variational Bayes” log likelihood

0VB(f1) = (gi) + bi(fi — gi), g =sen(f —2) © V/(f —2)2 + v +2
instead of the usual likelihood £(f;) = Inp(yi[fi) i.e. we solve u < £(€YB) instead of u + £(£). See
section [3.2] In the code of inf/infVB.m, the likelihood is implemented in the function 1ikVB.
At the end, the optimal value of W can be obtained analytically via wi = [by —€'(g1)l/191 — zi|.

For the minimisation in inf/infVB.m, we use a provably convergent double loop algorithm, where in
the inner loop a nonlinear least squares problem (convex for log-concave likelihoods) is solved using
inf/infLaplace.msuch that p < £(€YB) and in the outer loop, we compute v + dg((K~!+W)~1).
The only requirement to the likelihood function is that it returns the values z and b required by the
bound which are delivered by the call (see section

e [b,z] = 1lik(hyp, y, [1, ga, ’infVB?)

The negative marginal likelihood upper bound —In Zy/g is obtained by integrating the prior times
the exact representation of the likelihood

2
1
p(ylf) ryﬂggq(yl V), qylf,y) ( I\w)eXp( y) my, Y=, vV=by+tz
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w.r.t. the latent variables f yielding

n

“wZve = I N,k [T astuiltivoar
i=1

1
= —InN(mlv,K+T)+ 5 (h(y) —w'vZ2—1"1In 27ry) .

3.6 FITC Approximations

One of the main problems with GP models is the high computational load for inference computations.
In a setting with n training points x, exact inference with Gaussian likelihood requires O(n?) effort;
approximations like Laplace of EP consist of a sequence of O(n?3) operations.

There is a line of research with the goal to alleviate this burden by using approximate covariance
functions k instead of k. A review is given by Candela and Rasmussen |A Unifying View of Sparse
Approximate Gaussian Process Regression, JMLR, 2005. One basic idea in those approximations
is to work with a set of m inducing inputs u with a reduced computational load of O(nm?). In
the following, we will provide a rough idea of the FITC approximation used in the toolbox. Let K
denote the n X n covariance matrix between the training points x, K, the m x n covariance matrix
between the n training points and the m inducing points, and K, the m x m covariance matrix
between the m inducing points. The FITC approximation to the covariance is given by

K=~ K = Q =+ G7 G= dlag(g)a g= dlag(K - Q)a Q = KIQ;ulKuv Quu = Kyu + U%MI;

where oy, is the noise from the inducing inputs. Note that K and K have the same diagonal elements
diag(K) = diag(K); all off-diagonal elements are the same as for Q. The toolbox offers FITC ver-
sions for regression with Gaussian likelihood inf/infFITC.m, as well as for Laplace’s approximation
inf/infFITCLaplace.m and expectation propagation inf/infFITCEP.m.
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4 Likelihood Functions

A likelihood function py(ylf) (with hyperparameters p) is a conditional density [pp(ylf)dy =1
defined for scalar latent function values f and outputs y. In the GPML toolbox, we use iid. likelihoods
Po(vlif) = 1iL; Pp(yilfi). The approximate inference engine does not explicitly distinguish between
clagsification and regression likelihoods: it is fully generic in the likelihood allowing to use a single
code in the inference step.

Likelihood functionality is needed both during inference and while predicting.

4.1 Prediction

A prediction at x, conditioned on the data D = (X,y) (as implemented in gp.m) consists of the

predictive mean W, and variance 05* which are computed from the the latent marginal moments

e, , G%* i.e. the Gaussian marginal approximation N(f,|p¢,, G%*) via,
PAD ) = [ PlULLIPIEID XA ~ | plyalfIN(F.lur., 0% )df.. 3)

The moments are given by y, = [Y.p(y«|D,x.)dy. and 07 = [(ys — 11y,)’P(y«D, x.)dy.. The
likelihood call

e [lp,ymu,ys2] = lik(hyp, [1, fmu, £s2)
does exactly this. Evaluation of the logarithm of py, = p(y«|D,x.) for values y, can be done via
e [1p,ymu,ys2] = lik(hyp, y, fmu, £s2)

where 1p contains the number Inpy, .

Using the moments of the likelihood p(f,) = [y.p(yulfs)dy. and 0?(f,) = [(yu—p(f))2p(yslfs)dy.
we obtain for the predictive moments the following (exact) expressions

oy, = J [02(f4) + (1(fs) — py,)?] P(F:ID, x,) df 4.

1. The binary case is simple since y, € {—1,+1} and 1 =py, +p_y,. Using m, = p41, we find

Tl Yx = +1
Py. =
l1—m yYe=-1

Hy., = Z Y«P(yulD,x) =2-m —1 € [-1,1], and
y.==1

0f. = > (Y —uy)?pyalDx) =4 (1 —m) € [0,1].
y.==1

2. The continuous case for homoscedastic likelihoods depending on 1. =y, — f« only and having
noise variance o2(f,) = 02 is also simple since the identity p(y«|f«) = p(y« — f«[0) allows to
substitute yu < Y.+ yielding u(f.) = fut [ Yup(y«0)dy. and assuming [y.p(y«0)dy. =0
we arrive at

Hy, = MKf,, and
2 _ 2 2
oy, = Of +on.
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3. The generalised linear model (GLM) case is also feasible. Evaluation of the predictive distri-
bution is done by quadrature

Py.

= | Pl Ip(EID, 2.~ [l N e 0% )ar..

For GLMs the mean is given by u(f.) = g(f.) and the variance is usually given by a simple
function of the mean o?(f,) = v(g(fs)), hence we use Gaussian-Hermite quadrature with
N(f.lus,, 07.) = p(f.|D,x.) to compute

Hy.

2

(0

Y

- jg(f*)p(f*w,xndf*, and

- j[v(g(f*)mg(f*)uyﬂp(f*m,x*)df*#v(uy*).

. Finally the warped Gaussian likelihood predicitive distribution with strictly monotonically

increasing warping function g is given by the expression

pP(Y«D,x) = g’ (y)N (g(ys)lus,, 0% + o7

so that the predictive moments can be computed by Gaussian-Hermite quadrature.

In the following, we will detail how and which likelihood functions are implemented in the GPML
toolbox. Further, we will mention dependencies between likelihoods and inference methods and
provide some analytical expressions in addition to some likelihood implementations.

4.2 Interface

The likelihoods are in fact the most challenging object in our implementation. Different inference
algorithms require different aspects of the likelihood to be computed, therefore the interface is rather
involved as detailed below.

(likFunctions.m [16) =

% likelihood functions are provided to be used by the gp.m function:

1
2
3
4
5
6
7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

likErf
likLogistic
1ikUni

likGauss
likGaussWarp
likGumbel
likLaplace
likSech2
1ikT

likPoisson
1likGamma
1likExp
1likInvGauss
likBeta

likMix

% The likelihood

(Error function, classification, probit regression)
(Logistic, classification, logit regression)
(Uniform likelihood, classification)

(Gaussian, regression)

(Warped Gaussian, regression)

(Gumbel likelihood for extremal values)
(Laplacian or double exponential, regression)
(Sech-square, regression)

(Student’s t, regression)

(Poisson regression, count data)
(Nonnegative regression, positive data)
data)

data)

(Nonnegative regression, positive
(Nonnegative regression, positive
(Beta regression, interval data)

(Mixture of individual covariance functions)

functions have three possible modes, the mode being selected
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78

80

as follows (where "1lik" stands for any likelihood function in "1lik/lik*.m".):
1) With one or no input arguments: [REPORT NUMBER OF HYPERPARAMETERS]
s = 1lik OR s = 1lik(hyp)

The likelihood function returns a string telling how many hyperparameters it
expects, using the convention that "D" is the dimension of the input space.
For example, calling "likLogistic" returns the string ’0°.

2) With three or four input arguments: [PREDICTION MODE]
lp = lik(hyp, y, mu) OR [lp, ymu, ys2] = lik(hyp, y, mu, s2)

This allows to evaluate the predictive distribution. Let p(y_*|f_x*) be the
likelihood of a test point and N(f_*|mu,s2) an approximation to the posterior
marginal p(f_*|x_*,x,y) as returned by an inference method. The predictive
distribution p(y_*|x_*,x,y) is approximated by.

q(y_*) = \int N(f_#*|mu,s2) p(y_*|f_*) df_x

lp = log( q(y) ) for a particular value of y, if s2 is [] or 0, this
corresponds to log( p(ylmu) )
ymu and ys2 the mean and variance of the predictive marginal q(y)
note that these two numbers do not depend on a particular
value of y
All vectors have the same size.

3) With five or six input arguments, the fifth being a string [INFERENCE MODE]

lik (hyp, y, mu, s2, inf) OR
lik(hyp, y, mu, s2, inf, i)

[varargout]
[varargout]

There are three cases for inf, namely a) inflLaplace, b) infEP and c) infVB.
The last input i, refers to derivatives w.r.t. the ith hyperparameter.

al) [1p,dlp,d21p,d3lp] = lik(hyp, y, £, []1, ’infLaplace’)
lp, dlp, d21lp and d3lp correspond to derivatives of the log likelihood
log(p(yl£f)) w.r.t. to the latent location f.
lp = log( p(ylf) )
dlp = d log( p(ylf) ) / df
d2lp = d~2 log( p(ylf) ) / df~2
d31lp = d~3 log( p(ylf) ) / df-3

a2) [lp_dhyp,dlp_dhyp,d2lp_dhypl = lik(hyp, y, £, [1, ’infLaplace’, i)
returns derivatives w.r.t. to the ith hyperparameter
lp_dhyp = 4d log( p(ylf) ) / ( dhyp_1i)
dlp_dhyp d~2 log( p(ylf) ) / (df dhyp_1i)
d21p_dhyp = 473 log( p(ylf) ) / (df~2 dhyp_i)

Il

b1l) [1Z,d41Z,d21Z] = 1lik(hyp, y, mu, s2, ’infEP?’)
let Z = \int p(ylf) N(f|mu,s2) df then

1Z = log(Z)
dlz = d log(Z) / dmu
d21Z = d~2 log(Z) / dmu~2

17



81 % b2) [dlZhyp]l = lik(hyp, y, mu, s2, ’infEP’, i)
82 % returns derivatives w.r.t. to the ith hyperparameter
83 % dlZhyp = d log(Z) / dhyp_i

8 % c1) [b,z] = lik(hyp, y, []1, ga, ’infVB?’)

87 % ga is the variance of a Gaussian lower bound to the likelihood p(ylf).

88 %  p(ylf) \ge exp( bx(f+z) - (f+z).72/(2*ga) - h(ga)/2 ) \propto N(fl|bxga-z,ga)
89 % The function returns the linear part b and z.

91 % Cumulative likelihoods are designed for binary classification. Therefore, they
92 % only look at the sign of the targets y; zero values are treated as +1.

94 % Some examples for valid likelihood functiomns:
95 % lik = @likLogistic;

96 % lik = {’1ikMix’,{’1ikUni’,@likErf}}
97 % lik = {@likPoisson,’logistic’};
98 %

99 % See the help for the individual likelihood for the computations specific to
100 % each likelihood function.

102 (gpml copyright

4.3 Implemented Likelihood Functions

The following table enumerates all (currently) implemented likelihood functions that can be found
at 1ik/1ik<NAME>.m and their respective set of hyperparameters p.

1ik<NAME> | regression y;i € R Po(yilfi) = p=
. 7
Gauss Gaussian N(yilfi, 0?) = \/21—7“7 exp (7 (9‘2021) ) {In o}
GaussWarp Warped Gaussian N(ge (yi)lfi, 0%)gg(yi) {01,..,0n,,In o}
Gumbel Gumbel c\[ exp (—zi—e ®),zi=v+ %\}gﬂ), Isl=1 | {lno}
Sech?2 Sech-squared e’ (% (y —3 T 267:/3: {In o}
Laplace Laplacian Fo exp (—‘yib%f“) , b= \% {In o}
: reEl) g Ly 1y)” =S
T Student’s t r(g) N (1 + = ) {In(v—1),In o}
1ik<NAME> classification y; € {+1} Po(yilfi) = p=
Erf Error function J“E‘OZ‘ N(t)dt 0
Logistic Logistic function m 0
Uni Label noise % 0
1ik<NAME> count data y; € N Po(yilfi) = p=
Poisson Poisson ‘ py - %, w=-cef or u=1log(l+ef) 0
1ik<NAME> | nonnegative data yi; € Ry \[0} | pp(yilfi) = p=
Weibull Weibull, y; =T'(1 +1/k) kvi/i (yy/w* " exp (—(yy1/w*) {In k}
o x—1
Gamma Gamma %u exp (—%) {In o}
Exp Exponential uLexp (—%) 0
. Aly—n)?
InvGauss Inverse Gaussian \/ 27T7‘y3 exp (— (;Jﬂ:) ) {In A}
1ik<NAME> | interval data y; € [0, 1] Polyilfi) = p=
Peta Beta eyt -y [in ¢}
Composite likelihood functions [p1 (yilfi), p1(yilfi),..] = pe(yilfi)
Mix Mixture ‘ Z)- XiPj (y1|f1) {ln X1, In X2, }
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4.4 Usage of Implemented Likelihood Functions

Some code examples taken from doc/usageLik.m illustrate how to use simple and composite likeli-
hood functions to specify a GP model.

Syntactically, a likelihood function 1f is defined by
1k := ’func’ | @func // simple

1f := {1k} | {param, 1k} | {1k, {1k, .., 1k}} // composite
i.e., it is either a string containing the name of a likelihood function, a pointer to a likelihood function
or one of the former in combination with a cell array of likelihood functions and an additional list
of parameters.

(doc/usageLik.m [19)=

1 % demonstrate usage of likelihood functions

2%

3 % See also likFunctions.m.

4 %

5 (gpml copyright

6 clear all, close all

7n =5; f = randn(n,1); % create random latent function values
8

9 % set up simple classification likelihood functions

10 yc = sign(£);

11 1c0 = {’1ikErf’}; hypcO = []; % no hyperparameters are needed
12 1c1 = {@likLogistic}; hypcl = []; % also function handles are 0K
13 1c2 = {?1ikUni’}; hypc2 = [1;

14 1c3 = {’1ikMix’,{’1ikUni’ ,Q@1likErf}}; hypc3 = log([1;2]); ’mixture
15

16 % set up simple regression likelihood functions

17 yr = £ + randn(n,1)/20;

18 sn = 0.1, % noise standard deviation
19 1r0 = {’1likGauss’}; hyprO0 = log(smn);

20 1r1 = {’1likLaplace’}; hyprl = log(smn);

21 1r2 = {’1ikSech2’}; hypr2 = log(sn);

22 nu = 4; % number of degrees of freedom
23 1r3 = {’1ikT’}; hypr3 = [log(nu-1); log(sn)]l;

24 1r4 = {’1ikMix’,{1r0,1r1}}; hypr4 = [log([1,2]);hyprO;hypril;

25

26 a = 1; % set up warped Gaussian with g(y) = y + a*sign(y).*y."2

27 1rb5 = {’1likGaussWarp’,[’poly2’]}; hypr5 = log([a;sn]);

28 1r6 = {’1ikGumbel’,’+’}; hypr6 = log(sn);

30 % set up Poisson regression
31 yp = fix(abs(£f)) + 1;
32 1p0 = {@likPoisson,’logistic’}; hyppO = [];

33 1p1 = {@likPoisson,’exp’}; hyppl = [1;

34

35 % set up other GLM likelihoods for positive or interval regression
36 1gl = {@likGamma,’logistic’}; al = 2; hyp.1lik = log(al);

37 1g2 = {@likInvGauss,’exp’}; lam = 1.1; hyp.lik = log(lam);

38 1g3 = {@likBeta,’expexp’}; phi = 2.1; hyp.lik = log(phi);

39 1g4 = {@likBeta,’logit’}; phi = 4.7; hyp.lik = log(phi);

40

11 % 0) specify the likelihood function
42 1ik = 1cO; hyp = hypcO; y = yc;

43 % 1lik = 1r4; hyp = hyprd; y = yr;

44 % 1lik = 1pl; hyp = hyppl; y = yp;
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16 % 1) query the number of parameters
17 feval(lik{:})

49 % 2) evaluate the likelihood function on f
50 exp(feval(lik{:},hyp,y,f))

52 % 3a) evaluate derivatives of the likelihood
53 [1p,dlp,d21p,d3lp] = feval(lik{:}, hyp, y, £, [], ’infLaplace’);

535 % 3b) compute Gaussian integrals w.r.t. likelihood

56 mu = f; s2 = rand(n,1);

57 [1Z,d1Z,d21Z] = feval(lik{:}, hyp, y, mu, s2, ’infEP’);
59 % 3c) obtain lower bound on likelihood

60 ga = rand(n,1);
61 [b,z] = feval(lik{:}, hyp, y, [], ga, ’infVB’);

4.5 Compatibility Between Likelihoods and Inference Methods

The following table lists all possible combinations of likelihood function and inference methods.

Exact EP Laplace Type, Output Domain | Alternative Names

Likelihood \ Inference FITC | FITC.EP | FITC-Laplace VB | KL | MCMC | LOO
Gaussian v v v v oIV v v' | regression, R
Warped Gaussian v v v oIV v v' | regression, R
Gumbel v v v v regression, R
Sech-squared v v v IV v v regression, R logistic distribution
Laplacian v v v v v v regression, R double exponential
Student’s t v v |V v v regression, R

‘ Mixture ‘ ‘ v ‘ v ‘ ‘ v ‘ v ‘ v ‘ ‘ mixing meta likelihood ‘
Error function v v v v v classification, {£1} probit regression
Logistic function v v v IV v v classification, {+1} logit regression
Uniform v v v v v v classification, {£1} label noise
Weibull v v v' | positive data, R4 \{0} | nonnegative regression
Gamma, v v v' | positive data, R;\{0} | nonnegative regression
Exp v v v positive data, R \{0} | nonnegative regression
Inverse Gaussian v v v positive data, Ry \{0} | nonnegative regression
Poisson (v)* v v v v count data, N Poisson regression
Beta v v v interval data, [0, 1] beta regression

(v')* EP might not converge in some cases since quadrature is used.

Exact inference is only tractable for Gaussian likelihoods. Expectation propagation together with
Student’s t likelihood is inherently unstable due to non-log-concavity. Laplace’s approximation for
Laplace likelihoods is not sensible because at the mode the curvature and the gradient is undefined
due to the non-differentiable peak of the Laplace distribution. Special care has been taken for the
non-convex optimisation problem imposed by the combination Student’s t likelihood and Laplace’s
approximation.

4.6 Gaussian Likelihood

The Gaussian likelihood is the simplest likelihood because the posterior distribution is not only
Gaussian but can be computed analytically. In principle, the Gaussian likelihood would only be
operated in conjunction with the exact inference method but we chose to provide compatibility with
all other inference algorithms as well because it enables code testing and allows to switch between
different regression likelihoods very easily.

(lik/likGauss.m po)=
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function [varargout] = likGauss(hyp, y, mu, s2, inf, i)

% likGauss - Gaussian likelihood function for regression. The expression for the
% likelihood is

likGauss(t) = exp(-(t-y)~2/2xsn~2) / sqrt(2*pi*sn~2),

% where y is the mean and sn is the standard deviation.

% The hyperparameters are:

© 00 1 O U i W N =
==

—
=

hyp = [ log(sn) 1

12 % Several modes are provided, for computing likelihoods, derivatives and moments
13 J respectively, see likFunctions.m for the details. In general, care is taken
14 % to avoid numerical issues when the arguments are extreme.

15 %

16 (gpml copyright

17 %

18 % See also LIKFUNCTIONS.M.

19

20 if nargin<3, varargout = {’1’}; return; end % report number of hyperparameters
21

22 sn2 = exp(2xhyp);

23

24 if nargin<b % prediction mode if inf is not present
25 (Prediction with Gaussian likelihood

26 else

27 switch inf
28 case ’inflaplace’

29 (Laplace’s method with Gaussian likelihood

30 case ’infEP’

31 (EP inference with Gaussian likelihood

32 case ’infVB’

33 (Variational Bayes inference with Gaussian likelihood

34 end

35 end

(Prediction with Gaussian likelihood R1)= (20)

1 if numel(y)==0, y = zeros(size(mu)); end

2 s2zero = 1; if nargin>3, if norm(s2)>0, s2zero = 0; end, end % s2==0 7
3 if s2zero % log probability
4  1p = -(y-mu)."2./sn2/2-log(2*pi*sn2)/2; s2 = 0;

5 else

6 1p = likGauss(hyp, y, mu, s2, ’infEP’); % prediction
7 end

8 ymu = {}; ys2 = {};

9 if nargout>1

10 ymu = mu; % first y moment
11 if nargout>2

12 ys2 = s2 + sn2; % second y moment
13 end

14 end

15 varargout = {lp,ymu,ys2};
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The Gaussian likelihood function has a single hyperparameter p, the log of the noise standard
deviation oy .

4.6.1 Exact Inference

Exact inference doesn’t require any specific likelihood related code; all computations are done directly
by the inference method, section [3.1]

4.6.2 Laplace’s Approximation

2Zal (Laplace’s method with Gaussian likelihood [22a) = (20)

1 if nargin<é % no derivative mode
2 if numel(y)==0, y=0; end

3 ymmu = y-mu; dlp = {}; d21p = {}; d31lp = {};

1 1lp = -ymmu."~2/(2*sn2) - log(2*pi*sn2)/2;

) if nargout>1

6 dlp = ymmu/sn2; % dlp, derivative of log likelihood
7 if nargout>2 % d21p, 2nd derivative of log likelihood
8 d21p = -ones(size(ymmu))/sn2;

9 if nargout>3 % d3lp, 3rd derivative of log likelihood
10 d3lp = zeros(size(ymmu));
11 end

12 end

13 end
14 varargout = {lp,dlp,d2lp,d3lp};
15 else % derivative mode
16 1lp_dhyp = (y-mu)."2/sn2 - 1; % derivative of log likelihood w.r.t. hypers
17 dlp_dhyp = 2x(mu-y)/sn2; % first derivative,
18  d2lp_dhyp = 2*ones(size(mu))/sn2; % and also of the second mu derivative
19  varargout = {lp_dhyp,dlp_dhyp,d2lp_dhypl};
20 end

4.6.3 Expectation Propagation

B2l (EP inference with Gaussian likelihood E (20)

1 if nargin<é % no derivative mode
2 1Z = -(y-mu)."2./(sn2+s2)/2 - log(2*pix*(sn2+s2))/2; % log part function
3 d1Z = {}; 421z = {};

1 if nargout>1

5 dlZ = (y-mu)./(sn2+s2); % 1lst derivative w.r.t. mean
6 if nargout>2

7 d21Z = -1./(sn2+s2); % 2nd derivative w.r.t. mean
8 end

9 end
10 varargout = {1Z,d1Z,d21Z};
11 else % derivative mode
12 dlZhyp = ((y-mu)."2./(sn2+s2)-1) ./ (1+s2./sn2); % deriv. w.r.t. hyp.lik
13 varargout = {dlZhyp};
14 end

4.6.4 Variational Bayes
22d (Variational Bayes inference with Gaussian likelihood E (20)
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% variational lower site bound

h t(s) = exp(-(y-s)~2/2sn2)/sqrt (2*pi*sn2)

% the bound has the form: (b+z/ga)*f - £.72/(2*ga) - h(ga)/2
n = numel(s2); b = zeros(n,1); y = y.*ones(n,1); z = y;
varargout = {b,z};

O =

w

4.7 Warped Gaussian Likelihood

Starting from the likelihood p(y|f) we are sometimes facing the situation where the datay € Y C R
is not distributed according to p(y|f) but some nonlinear transformation of the data g(y) = z so
that z ~ p(z|f). Here, the warping function g : Y — R needs to be strictly monotonically increasing
i.e. g’(y) > 0. Formally, we start from the fact that p(z|f) integrates to one and use the derivative
dz = g’(y)dy to substitute

Jp(zmdz . Jpg(yﬂdy, po(ylf) = pla(y)If)g’(y)

where we have defined the log warped likelihood Inpg(ylf) =Inp(g(y)lf) +1ng’(y). The interesting
bit is that approximate inference methods such as infExact, inflaplace, infEP, infVB, infKL
remain fully feasible only prediction and derivatives become more involved. The usual GP inference
is recovered by using the identity warping function g : y — y. The construction works in princple
for any likelihood but our implementation in 1ikGaussWarp is limited to the Gaussian likelihood.

Hyperparameter derivatives

Hyperparameter derivatives for infLaplace are obtained as follows

9 . 0k d . ok d ok
30 3mPelull) = %lnﬁp(g(y)lfwr%ﬁlng’(y),k=071,2
ak+1 0 ak

Similarly for infEP the derivatives are given by

d ) d
aelnjpg(ylf)N(flu,GQ)df = aeanp(g(y)lf)N(flu,GQ)dHaelng/(y)
) d )

= —mlnjp(g(y)lf)ﬂ\f(flu,GQ)dfaeg(y)+aelng’(y)-

This trick above works for any homoscedastic likelihood where p(ylf) = p(y + BIf + ) such as
likGauss, likLaplace, 1ikSech2 and 1ikT.

Predictive moments
As detailed in ] the predictive distribution is — for Gaussian likelihood — given by

P(z«lD,xy) = JP(Z*H*)P(f*m,X*)df*:JN(Z*f*,U%)N(f*Wf*,U%*)df*

= N(Z*|uf*70-31+0-1%*)7 where Zyx = 9(9*)
PyD,x) = g’y N(g(ys)lr,, 0% + o).
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Hence, the predictive moments are obtained by the 1d integrals

Hy, = | Y«g (Y )N(g(ys«)lps,, o5 + 07, )dys

= | g7z )N(z4lps,, 0% + 0% )dz., and

0r, = [(e — 1y’ (Y IN(g(y)lr,, 0% + o7, )dys

= (971(2*) - Hy*)QN(Z*|Hf*7 0—31 + G%*)dz*.

4.8 Gumbel Likelihood

Distributions of extrema are well captured by the Gumbel distribution

ply) = éexp (—~z—e7%), Z:S‘Jgn

with mean @ = 1 + By and variance o = 72B?/6 where y = 0.57721566490153 denotes Eu-
ler—Mascheroni’s constant. Skewness is approximately given by 1.1395s where s is a sign switching

between left and right skewness and kurtosis is 12/5. The final expression for the Gumbel likelihood
is

, s € {£1}

p(ylf) = 07:/6 exp(—z—e ?), z=y+ sai\/a(y 1), s € {+1).

4.9 Laplace Likelihood
Laplace’s Approximation

The following derivatives are needed:

Inp(ylf) = —In(2b)— |f—by
dlnp  sign(f—y)
of b
%Inp B ?Inp B ?Inp 0
(0f)? (0f)3 (0ln oy )(0f)?
Olnp _ [f—yl
dlne, b

Expectation Propagation

Expectation propagation requires integration against a Gaussian measure for moment matching.

We need to evaluate InZ = In [ £(ylf, 0% )N(flw, 0?)df as well as the derivatives 2I2Z and *InZ

on o2
where N(f|u, 02) = ﬁexp (—(f;(j‘i)Q), L(ylf,0%) = 5 exp (—lygﬂ>, and b = % As a first
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step, we reduce the number of parameters by means of the substitution f = Gn Y vielding

InZ = In

= In

= In

z = | elyit )N, o?lar
_ 1 V2 (f —p)? f—y
= ﬁﬁ Jexp ( 552 > exp (\/§ o > df

V2 (onf+y—w? .

. 2
RE (f—“—_u)
O—TL n On ~ ~
= ———|exp|— L(f|0, 1)df
O'O'n\/27'EJ P 20? (f10, 1)
1 ~ 9
= o L(fl0, DN(flp, 6°)df
nZ = an—lnananL(fIO,l) (flft, 62)df — In o
with L = ”—9 and 0 = Gin Thus, we concentrate on the simpler quantity In Z.
C
. £
Jexp (—( o \[Ifl) df —In 6vV27 — In V20,
rro ~ 00
f f—
J exp(—( 205 +ff>df+J eXp —( —V2f df]JrC
e . m,
0 2 2./2 2 2./2 2
2 — 2(+ &V2)f + i —2~~2f~
exp | — (u+(~y i+ df+ exp (k—o V2)f+ ¢ df| +C
_ 262 62
i m2 Y\ (¢ (f—m_)? m2 C(f=my)? 2
_exp<262 Jooexp <_262> df + exp GJ;) exp 552 )df] —ﬁ—i-C

Here, ©(z) =

InZ

where z =

Now, using

)( JO N(flm,, & )dfﬂ G2—1n\/§on

+e p<2(T )] —In V20,

r 0
exp <m2_2> N(fim_, 6%)df + exp (
m_ m?
>(D( & )_eXp<26+2>
0

o (30) 8 (%) (V) (2]« -1 v

= In|exp [ In®@(—z) + V20| +exp | In®@(z_) — V20 | | +3° —Inv20n
at a_

= In(e* +e% )+ 6% —Inv20n,

LroV2=rF 4+ V2,2 =5 —oV2="2 -2V 2and =2 o=
%ln D(z) = QIZJ%CD(Z) = g% %gg we tackle first derivative
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dlnz eV G et G-
o et + ed-
anr 0 \/§
2% T ho(— v
on m n®(—z4) + o
_ N(_Z+) \/i Jd+ \ﬁ
o®(—zy) on o On
da- 0 gy V2
ou op On
_ Nlz)  v2_g- V2
- o®(z_) on o  On
op o On
as well as the second derivative
) [¢] fi) da_
2z 2 (em %)+ 2 (e%5)  fomz)?
o2 ed+ + ed- ou
i eai% _ a4 da+ 2+agaj:
ou ou N ou ou?
0%a, 1 %N(—ZH@(—ZH - a%L(D(—ZHN(—ZH
ou? o 0%(—z4)
0—2z2 —z
NGz @(z ) T N2 () O
B o D% (—z4)
_ N(-z4) ) O(—z4)zy —N(—z4) _ _q%r — q+Z+
02 D2(—z,) 02
a1 2NE )0 ) - 20 Nz )
2 o ®2(z_)
o— 2
N ®R(-) T - N () G
o D2(z_)
~ N(z-) —®(z_)z_ —N(z_) _q2_+q,zf
- o2 ®2(z_) 02
0%ay 91 Fq+z:
ou2 0?2
which can be simplified to
InZ  e%by+e%b_  (3lnZ\®
ouz ed+ 4 ed- ou
using
2 2 2 2
by — day +aai _ $q7i:|:@ 9% Fqizs
on ou? o on 02
2
_ (9= V2\ 4l qxzs
0O On 02 o?
2 V8 Z4
= 2 \oon T2)
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We also need

oz _ e tet o, 207
dlnoy ed+ 4 e o
Variational Bayes
We need h(y) and its derivatives as well as 3(y):
hy) = Sv+h2ed)+y*y!
n
2
hl — _ 2.,—2
(v) oz VY
hly) = 29y
Bly) = yy!

410 Student’s t Likelihood

The likelihood has two hyperparameters (both represented in the log domain to ensure positivity):
the degrees of freedom v and the scale oy, with mean y (for v > 1) and variance —~5 0,2 (for v > 2).

v—2
2\ — 5+ v+l
plin) = 2+ (1+ 20 Cz= T8
r(y

2
VO3

Laplace’s Approximation

For the mode fitting procedure, we need derivatives up to third order; the hyperparameter derivatives
at the mode require some mixed derivatives. All in all, using r =y — f, we have

1 1 1 2
mp(ylf) = 1nr<V; )—mr(;)—anvmi—V; 1n<1+ ! )

vo?
Olnp T
of (V+1)T2+VG$1
2 2 .2
alnf _ (V+1)T2 v02n2
(of) (r2 +vo2)
03 Inp 13 — 3rvo?
= v+ 1)
(of)3 v+ )(r2—|—v0%)3
dlnp  03Z V(14 2 +v+1 2
dlnv _ dlnv 2 - Vo2 2 1r24vo?
3z  vdInT(¥2) vdnT(3) 1
dlnv 2 dlnv 2 dlnv 2
3 Inp B VrQ(r2—3(v+1)Gn2)+v0121
(01nv)(0f)? (r?+vo2)?
dlnp 12
dlno, (V+1)r2+vcr%_1
33 Inp vo? — 3r?

= 2voi(v+1)

(01ln o) (0f)? (r2+vo2)3
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4.11 Cumulative Logistic Likelihood

The likelihood has one hyperparameter (represented in the log domain), namely the standard devi-
ation oy

T i
f) = Z-cosh™ 2 (t(f — , T= , L=
p(ylf) (t(f—y)) 203 1073

Laplace’s Approximation

The following derivatives are needed where ¢(x) = In(cosh(x))

Inp(ylf) = In(n) —In(40nv3) — 24 (t(f —y))

L L)
)
a(galfrﬁf = 20¢" (t(f—y))

b = 2 (20 (x(f )+l )6 (x(1 )
aalinfn = 2e(f =yl (t(f —y)) —1

4.12 GLM Likelihoods: Poisson, Weibull, Gamma, Exponential, Inverse Gaussian and Beta

Data y from a space other than R e.g. N, R or [0, 1] can be modeled using generalised linear model
likelihoods p(y|f) where the expected value Ely] = p is related to the underlying Gaussian process
f by means of an inverse link function u = g(f). Typically, the likelihoods are from an exponential
family, hence the variance V[y] = v(u), is a simple function of the mean p as well as higher order
moments such as skewness S[y] = s(u) and kurtosis Kly] = k(u).

Here, we directly specify the inverse link function p = g(f) defining the mapping from the GP f
to the mean intensity p. For numerical reasons, we work with the log of the inverse link function
h(f) =1n g(f) and use its derivatives h’, h”" and h'”’ for subsequent computations. In the table below,
we have summarised the GLM likelihood expressions, the moments, the range of their variables and
the applicable inverse link functions.

Likelihood p= v(p) = s(p) = k(p) = pylf) = ye ne Inverse Links
Poisson 0 n 1/ 1/u » . wY exp(—p)/y! N R exp, logistic
Weibull (n) | pllya/yd—1) | Tepivern | Yo TR eI |y /uyya /W) exp (<(yva/W®) | R0} | R\(0) | exp, Logistic
Gamma {Ino | u?/a 2/ 6/ “;Y:;l w%exp (7%) R4\{0} | R4 \{0} | exp, logistic
Exponential | § p? 2 6 ptexp (—%) R \{0} | Ry\{0} | exp, logistic
Inv. Gauss | {InA} | u3/A 3V /A 15u/A A /ﬁ exp (7)\(2“&;‘)_) R4 \{0} | R4 \{0} | exp, logistic
(2—1p)(1+¢) (¢+1)?—v (1) (5¢+6) () - — - i
Beta {Ind} | u(1—p)/(1+¢) \/v(%[zﬂb) 6~ @ 12116 +3) rasraemeryt? H1—y) W=t | [o,1] [0,1] expexp, logit

4.12.1 Inverse Link Functions

Possible inverse link functions and their properties (U convex, N concave, 1 monotone) are sum-
marised below:
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util/glm_invlink * | g(f)=p= [g:R— [ gis | h(f)=Inp=[his |

exp ef R, ut | f u,N,t
logistic In(1+ef) Ry Ut [In(ln(1+eM) | N1
expexp exp(—e~ 1) | [0,1] 0 —e u,t
Togit l+e N[00 [t |[-W{I+eN]us

Exponential inverse link: exp

For g(f) = e things are simple since h(f) = f, h/(f) = 1 and h”(f) = h/"(f) = 0.

Logistic inverse link: logistic

For g(f) = In(1 + ef) the derivatives of h(f) are given by
h(f) = In(n(1+e"))

/ 1 1 / —ef
hi(f) = mS(_f)7 s(f) = my s'(f) = m = —s(—f)s(f)
1 e f 1 ef 1

In(1+ef)(1+e 2 Im?(1+ef)l+efl+ef
= h(f) [s(f) —h'(f)]

ef

= h"(f) [s(f) —2h/(f)] — h/(F)s(f)s(—F).

h”(f) = h"(f) [s(f) —h'(f)] + h'(f) [ - h”(f)}

Note that g(f) = eMf) =1n(1 + ef) is convex and h(f) = In(In(1 + €)) with

h(f) = L 1 e’ L L <o
~ In(1+ef) In(14+ef)) 1+efl4ef ™

is concave since ef > 1In(1 + ef) for all f € R.

Double negative exponential inverse link: expexp

For g(f) = exp(—e~T) the derivatives of h(f) are given by

hif) = —ef
h'(f) = —h(f)
h(f) = h(f)
h™(f) —h(f)

Logit regression inverse link: logit

For g(f) = 1/(14+e~ ) the derivatives of h(f) can be computed using the logistic inverse link function
he(f) since h(f) = — exp(he(f))

h(f) = f—eM(®

h(f) = 1—e™hy(f)

h(f) = —e™Omy(f)? +hy (1) = Mgy (—)sp(f)
R7(f) = =™ hy()? +3hy (Hhy(f) + Ry’ ()]
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4.12.2 Poisson Likelihood

Count data y € N™ can be modeled in the GP framework using the Poisson distribution p(y) =
uYe H/y! with mean/variance Ely] = V[y] = u, skewness S[y] = 1/,/u and kurtosis Kly] = 1/pn
leading to the likelihood

p(ylf) = wexp(—p)/y!, n=g(f)
S hnpylf) = y-Ing(f)—g(f) —InT(y +1).

For Laplace’s method to work, we need the first three derivatives of the log likelihood Inp(ylf),
where h(f) = In g(f)

Inpylf) = y-h(f)—exp(h(f) —lnT(y+1)
9 mplylf) = W(f)ly— exp(h(f))]

of

2

%mp(ylf) = h"(f) [y — exp(n(f))] — [h'()]? exp(h(f))

3

%mp(ylf) = h"(f) [y — exp(h(f)] — 3/ () - h"(f) exp(h(f)) — [N (F))® exp(h(f))

h"(£) [y — exp(h(f))] = h'(f)[R'(£)? + 3h" ()] exp(h(f)).

Note that if Inp = h(f) is concave and p = g(f) is convex then the Poisson likelihood p(yl|f) is
log-concave in f which is the case for both exp and logistic.

4.12.3 Weibull Likelihood

Nonnegative data y € R4 such as time-to-failure can be modeled in the GP framework using the
Weibull distribution p(y) = k/A(y/A)< le= /A" with shape parameter k > 0, scale parameter
A > 0, mean E[ly] = Ay; = n where y; = I'(1 +j/«), variance V[y] = Alyy — 2 = 12 (ya/y2 — 1),
skewness S[y] = (v3 — 3v1v2 +2v3)/(y2 —¥?)?/? and kurtosis Kly] = (y4 —4y1y3 + 12y3y2 — 3v3 —
6v1)/(v2 —v?)%. Using the substitution p = Ay; < 1/A =y1/H, we obtain

Kk—1 K
plylf) = Ylg (wD exp ( <Ylli> ) w=g(f) >0

ot < () (18)- ()

Note that the Weibull likelihood p(ylf) is log-concave in f neither for the exp nor for the logistic
inverse link.

4.12.4 Gamma Likelihood

Nonnegative data y € Ry can be modeled in the GP framework using the Gamma distribution
ply) = 07%/T(x)y*le Y/® with shape parameter « > 0, scale parameter 8 > 0, mean Efy] =
x0 = w, variance V[y] = af? = u?/«, skewness Sly] = 2/+/« and kurtosis K[y] = 6/«x. Using the
substitution © = «b < o/p = 1/6, we obtain

B (Xocycxfl . yo _
i) = S e (<) =gl >0
S hpiylf) = —« <1np+ ﬁ) —InZy(y), nZy(y) =InT(a) —axlnax+ (1 — ) Iny.
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Note that if In u = h(f) was convex and u = g(f) was concave then the Gamma likelihood p(ylf)
would be log-concave in f which is not the case for both exp and logistic.

4.12.5 Exponential Likelihood

Nonnegative data y € Ry can be modeled in the GP framework using the Exponential distribution
ply) = 67 'eY/9 with scale parameter 8 > 0, mean E[y] = 8 = u, variance V[y] = u?, skewness
Sly] = 2 and kurtosis K[y] = 6. We obtain

pylf) = wlexp <—1i> u=g(f)>0

Slhnpylf) = —lnp— %

Note that for exp (but not for logistic) the likelihood is log-concave. The exponential distribution
corresponds to the Gamma distribution with o = 1 and the Weibull distribution with k = 1.

4.12.6 Inverse Gaussian Likelihood

Nonnegative data y € RI' can be modeled in the GP framework using the Inverse Gaussian distri-
bution p(y) = /A/(2my3) exp(—A(y — n)?/(2u?y)) with shape parameter A > 0, mean parameter
w > 0, mean E[y] = y, variance V[y] = u3/A, skewness S[y] = 3y/u/A and kurtosis K[y] = 15u/A.
We obtain

A Ay — w)?
£ = ALY Bl o/ IS
plylf) 2 P < oy )M (f) >0
Aly — )2 1
o hnp(ylf) = —m—lnza(y), In Za(y) = =5 (InA — In2my?).

The inverse Gaussian likelihood is in general not log-concace in f for both exp and logistic.

4.12.7 Beta Likelihood

Interval data y € [0,1]™ can be modeled in the GP framework using the Beta distribution p(y) =
y* 11 —y)P~1/B(«, B) with shape parameters &, > 0, mean Ely] = a/(x + B) and variance
Viyl = aB/[(c+ B)2(cx+ B + 1)] and 1/B(x,B) = Mo + B)/[T(c)T(B)]. Reparametrising using
the mean parameter © = Ely] = «/(x + ) , the shape parameter & = o + 3, the variance
Viyl = u(1 —w)/(1 + ¢) and hence

i) = ot 9
Py M) (1 — W)Y
e hpylf) = WnN(¢)—InM(ud) —InT((1— wb) + (ud — 1)lny + (1 — W — 1) In(1 —y).

ME—L(] ) (Ime=1y — g(f) > 0

The Beta likelihood is in general not log-concace in f for both exp and logistic.
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5 Mean Functions

A mean function mg, : X — R (with hyperparameters ¢) of a GP f is a scalar function defined over
the whole domain X that computes the expected value m(x) = E[f(x)] of f for the input x.

5.1 Interface

In the GPML toolbox, a mean function m : X — R needs to implement evaluation m = mg, (X) and

first derivatives m; = %m with respect to the components i of the parameter ¢ € © as detailed

below.

—~

meanFunctions.m [32) =

1 % mean functions to be use by Gaussian process functions. There are two
2 % different kinds of mean functions: simple and composite:

3%

4 % simple mean functions:

5%

6 % meanzero - zero mean function

7% meanOne - one mean function

8 % meanConst - constant mean function

9 % meanLinear - linear mean function

10 % meanPoly - polynomial mean function

11 %

12 % composite covariance functions (see explanation at the bottom):
13 %

14 % meanScale - scaled version of a mean function

15 % meanPow - power of a mean function

16 % meanProd - products of mean functions

17 % meanSum - sums of mean functions

18 % meanMask - mask some dimensions of the data

19 %

20 % Naming convention: all mean functions are named "mean/mean*.m".
21 %

22

23 % 1) With no or only a single input argument:

24 %,

25 % s = meanNAME or s = meanNAME(hyp)

26 %

27 % The mean function returns a string s telling how many hyperparameters hyp it
28 7 expects, using the convention that "D" is the dimension of the input space.
29 % For example, calling "meanLinear" returns the string ’D’.

30 %

31 % 2) With two input arguments:
32 %

33 % m = meanNAME (hyp, x)

34 %

35 % The function computes and returns the mean vector where hyp are the

36 % hyperparameters and x is an n by D matrix of cases, where D is the dimension
37 % of the input space. The returned mean vector is of size n by 1.

38 %

39 % 3) With three input arguments:

40 %

41 % dm = meanNAME (hyp, x, i)

42 7

43 J, The function computes and returns the n by 1 vector of partial derivatives
44 9, of the mean vector w.r.t. hyp(i) i.e. hyperparameter number i.
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45 9

16 % See also doc/usageMean.m.
A7 h

18 (gpml copyright

5.2 Implemented Mean Functions

We offer simple and composite mean functions producing new mean functions m(x) from existing
mean functions p;(x). All code files are named according to the pattern mean/mean<NAME>.m for
simple identification. This modular specification allows to define affine mean functions m(x) =
¢ +a'x or polynomial mean functions m(x) = (c + a'x)2. All currently available mean functions
are summarised in the following table.

Simple mean functions m(x)

<NAME> | Meaning m(x) = b
Zero mean vanishes always 0 0

One mean equals 1 1 0
Const mean equals a constant c ceR
Linear | mean linearly depends on x € X C RP alx a € RP
Poly mean polynmially depends on x € X C RP 24 a:'i—xd ac RP*d
Composite mean functions [y (x), ua(x),..] = m(x)

<NAME> | Meaning m(x) = b
Scale | scale a mean op(x) xeR
Sum add up mean functions 2ix) |0

Prod multiply mean functions [Lp(x) |0

Pow raise a mean to a power n(x)4 0

Mask act on components I C [1,2,..,D] of x € X C RP only | u(xg) 0

5.3 Usage of Implemented Mean Functions

Some code examples taken from doc/usageMean.m illustrate how to use simple and composite mean
functions to specify a GP model.

Syntactically, a mean function mf is defined by
mn := ’func’ | @func // simple

mf := {mn} | {mn, {param, mf}} | {mn, {mf, .., mf}} // composite
i.e., it is either a string containing the name of a mean function, a pointer to a mean function or one
of the former in combination with a cell array of mean functions and an additional list of parameters.

(doc/usageMean.m [33)=
1 % demonstrate usage of mean functions
2%

3 % See also meanFunctions.m.

L%

5 {gpml copyright

6 clear all, close all

7n=5; D=2; x = randn(n,D); % create a random data set

9 % set up simple mean functions

10 m0 = {’meanZero’}; hypO = []; % no hyperparameters are needed
11 m1 = {’meanOne’}; hypl = []; % no hyperparameters are needed
12 mc = {@meanConst}; hypc = 2; 7 also function handles are possible
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

ml = {@meanlLinear}; hypl = [2;3]; % m(x) = 2*%x1 + 3%x2
mp {@meanPoly,2}; hypp [1;1;2;3]; % m(x) = x1+x2+2*%x1°2+3%*x2"2

% set up composite mean functions

msc = {’meanScale’,{m1}}; hypsc = [3; hypl]l; % scale by 3
msu = {’meanSum’,{m0,mc,ml}}; hypsu = [hypO; hypc; hypll; % sum
mpr = {@meanProd,{mc,ml}}; hyppr = [hypc; hypll; % product
mpo = {’meanPow’,3,msu}; hyppo = hypsu; % third power
mask = [false,true]; % mask excluding all but the 2nd component
mma = {’meanMask’,mask,ml}; hypma = hypl(mask);

% 0) specify mean function
% mean = mO; hyp = hypO;
% mean = msu; hyp = hypsu;
% mean = mpr; hyp = hyppr;
mean = mpo; hyp = hyppo;

% 1) query the number of parameters
feval (meanq{:})

% 2) evaluate the function on x
feval (mean{:},hyp,x)

% 3) compute the derivatives w.r.t. to hyperparameter i
i = 2; feval(mean{:},hyp,x,1)
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6 Covariance Functions

A covariance function ky, : X x X — R (with hyperparameters 1) of a GP f is a scalar function
defined over the whole domain X? that computes the covariance k(x,x’) = V[f(x), f(x’)] = E[(f(x) —
m(x))(f(x’) —m(x’))] of f between the inputs x and x’.

6.1 Interface

Again, the interface is simple since only evaluation of the full covariance matrix K = ky,(X) and its
derivatives K; = aiwiK as well as cross terms k, = ky, (X, x,) and Kys = Ky (x4, %) for prediction
are required.

—~

covFunctions.m |35)=

1 % covariance functions to be use by Gaussian process functions. There are two
2 % different kinds of covariance functions: simple and composite:
3%
4 % simple covariance functions:
5% covConst - covariance for constant functiomns
6 % covCos - sine periodic covariance function (1d) with unit period
7% covLIN - linear covariance function without parameters
8 % covLINard - linear covariance function with ARD
9 % covLINiso - linear covariance function
10 % covLINone - linear covariance function with bias
11 % covMaternard - Matern covariance function with nu=1/2, 3/2 or 5/2 with ARD
12 % covMaterniso - Matern covariance function with nu=1/2, 3/2 or 5/2
13 % covNNone - neural network covariance function
14 % covNoise - independent covariance function (i.e. white noise)
15 % covPeriodic - smooth periodic covariance function (1d)
16 % covPeriodicNoDC - as above but with zero DC component and properly scaled
17 % covPoly - polynomial covariance function
18 % covPPard - piecewise polynomial covariance function (compact support)
19 % covPPiso - piecewise polynomial covariance function (compact support)
20 % covRQard - rational quadratic covariance function with ARD
21 % covRQiso - isotropic rational quadratic covariance function
22 % covSEard - squared exponential covariance function with ARD
23 % covSEiso - isotropic squared exponential covariance function
24 % covSEisoU - same as above but without latent scale
25 % covSM - spectral mixture covariance function
26 % covGaborard - Gabor covariance function with ARD
27 % covGaborsio - isotropic Gabor covariance function
28 %
29 % composite (meta) covariance functions (see explanation at the bottom):
p p
30 % covScale - scaled version of a covariance function
31 % covProd - products of covariance functions
32 % covSum - sums of covariance functions
33 % covADD - additive covariance function
34 % covMask - mask some dimensions of the data
35 % covPERard - make ARD stationary covariance periodic
36 % covPERiso - make isotropic stationary covariance periodic
37 %
38 % special purpose (wrapper) covariance functions
39 % covFITC - to be used in conjunction with infFITC for large scale
40 % regression problems; any covariance can be wrapped by
41 % covFITC such that the FITC approximation is applicable
42 %

43 7% Naming convention: all covariance functions are named "cov/cov*.m". A trailing
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44 9, "iso" means isotropic, "ard" means Automatic Relevance Determination, and
45 % "one
46 %

47 7 The covariance functions are written according to a special convention where
48 7 the exact behaviour depends on the number of input and output arguments

49 7 passed to the function. If you want to add new covariance functions, you

50 % should follow this convention if you want them to work with the function gp.
51 % There are four different ways of calling the covariance functions:

52 %

53 % 1) With no (or one) input argument(s):

54 %

35 h s = cov

56 %

57 % The covariance function returns a string s telling how many hyperparameters it
58 % expects, using the convention that "D" is the dimension of the input space.

59 % For example, calling "covRQard" returns the string ’(D+2)’.

" means that the distance measure is parameterized by a single parameter.

60 %

61 % 2) With two input arguments:

62 %

63 % K = cov(hyp, x) equivalent to K = cov(hyp, x, [])
64 %

65 % The function computes and returns the covariance matrix where hyp are

66 % the hyperparameters and x is an n by D matrix of cases, where

67 % D is the dimension of the input space. The returned covariance matrix is of
68 ), size n by n.

69 %

70 % 3) With three input arguments:

72 % Ks = cov(hyp, x, xs)
73 h kss = cov(hyp, xs, ’diag?’)

75 7 The function computes test set covariances; kss is a vector of self covariances
76 % for the test cases in xs (of length ns) and Ks is an (n by ns) matrix of cross
77 % covariances between training cases x and test cases xs.

78 h

79 % 4) With four input arguments:

80 %

81 % dKi = cov(hyp, x, [1, 1)

82 % dKsi = cov(hyp, x, xs, 1)

83 % dkssi = cov(hyp, xs, ’diag’, i)
84 %

85 % The function computes and returns the partial derivatives of the
86 % covariance matrices with respect to hyp(i), i.e. with
87 % respect to the hyperparameter number i.

89 % Covariance functions can be specified in two ways: either as a string
90 % containing the name of the covariance function or using a cell array. For
91 % example:

92 %

93 % cov = ’covRQard’;
94 % cov = {’covRQard’};
95 % cov = {Q@covRQard};
96 %

97 % are supported. Only the second and third form using the cell array can be used
98 % for specifying composite covariance functions, made up of several

99 % contributions. For example:

100 %

101 % cov = {’covScale’, {’covRQiso’}};
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102 % cov = {’covSum’, {’covRQiso’,’covSEard’,’covNoise’}};

103 % cov = {’covProd’,{’covRQiso’,’covSEard’,’covNoise’}};

104 % cov = {’covMask’,{mask,’covSEiso’}}

105 % q=1; cov = {’covPPiso’,q};

106 % d=3; cov = {’covPoly’,d};

107 % cov = {’covADD’,{[1,2],’covSEiso’}};

108 % cov = {@covFITC, {@covSEisol}, u}; where u are the inducing inputs
109 %

110 ), specifies a covariance function which is the sum of three contributions. To
111 % find out how many hyperparameters this covariance function requires, we do:
112 %

113 % feval(cov{:})

114 7%

115 % which returns the string ’3+(D+1)+1’ (i.e. the ’covRQiso’ contribution uses
116 % 3 parameters, the ’covSEard’ uses D+1 and ’covNoise’ a single parameter).
117 %

118 % See also doc/usageCov.m.

119 %

120 (gpml copyright

6.2 Implemented Covariance Functions
Similarly to the mean functions, we provide a whole algebra of covariance functions k: X x X — R
with the same generic name pattern cov/cov<NAME>.m as before.

Besides a long list of simple covariance functions, we also offer a variety of composite covariance
functions as shown in the following table.

Simple covariance functions k(x,x’)

<NAME> Meaning k(x,x") = P
Noise additive measurement noise 0'%5(.\' —x') Inoy
Const covariance equals a constant o In o¢
LIN linear, X C RP x'x/ 0
LINard linear with diagonal weighting, X C RP xTA 2 {InAy,..,InAp}
LINiso linear with isotropic weighting, X C RP xx'/0 In¢
LINone linear with bias, X C RP xTx"+1)/€% In¢
Poly polynomial covariance, X C RP G%(XTX, +c)d {lnc,Ino¢}
SEard full squared exponential, X C RP 0‘% exp (7l(x —xNTA 2(x— \')) {lnAy,..,InAp,Ino¢}
SEiso diagonal squared exponential, X C RP o2 exp ( 2;2 (x—x)T(x—x ) {In¢,1n o¢}
SEisoU squared exponential, X C RP exp(—%x—r\ ) In¢
RQard rational quadratic, X C RP o? (1+ i(xfx')-r/\ 2()(7);’))70( {InA1,..,InAp,In oy, In o
RQiso rational quadratic, X C RP o (1 + ﬁ(\ —x)T(x— x’))ia {ln¢,1n o¢,1n o}
Maternard Matérn, X CRP, fi(t) =1, f3(t) = 1+ t, f5(t) = f3(t) + % 02fa(ra) exp(—ra), Ta = /dx —x)TA2(x —x/) {InAy, .., InAp,Ino¢}
Materniso Matérn, X C RP, f1(t) =1, f3(t) =14 t, f5(t) = f3(t) + % o%fq(ra) exp(—Tq), Ta = \/(%(x —x)T(x—x’) {In¢,In o}
NNone neural net, X C RP, f(x) =1 +x' A~%x oZsin~! (M) {In¢,1In o¢}
f(x)f(x’)

Periodic periodic, X C R 0% exp (7% sinZ[m [lx — x]| /p)) {In¢,Inp,Ino¢}
PeriodicNoDC | periodic, X C R, rescaled and DC component removed O‘f%, K(t) = exp (7(27 sin? [Trt/p]) {In¢,Inp,In o¢}
Cos periodic cosine, X C R O'f cos (7t |x = x'[| /p]) {lnp,Ino¢}
PPard compact support, piecewise polynomial f, (1), X C RP, oZmax(0,1 — 1) (1), 17 = (x —x) TAZ(x —x/) {InA1,..,InAp,Ino¢}
PPiso compact support, piecewise polynomial f,(r), X € RP, 0% max(0,1 — )PV (r), T = == )‘ H, j= LDJ +v+1 {In¢,In o¢}
- spectral mixture, X C RP, w € RS, M,V e REXQ w! (HE 1 exp(— %\ ar?) ® cos(mgq r)), r=2m|x—x'|| {lnw,InM,In V}

spectral mixture, X C RP, W ]R}:XQ, M, Ve ]KL:XQ Hd 1V, (Pxp( %\ ) ® (‘os(mdr]). T =27||x — x| {InW,InM,InV}
Gaborard anisotropic Gabor function, X C RP, A,p € ]RE Hd Lexp(— ]cos[?ﬂ‘rd/pd), Tq =Ixa — x4l {InA,Inp}
Gaboriso isotropic Gabor function, X C RP, (peRy exp(—W) cos(Zm'/p), r=|[x—x/| {In¢,Inp}
Composite covariance functions [ki(x,x’), k2(x,x),..] — k(x,x")
<NAME> Meaning k(x,x) = P
Scale scale a covariance ak(x,x’) xeR
Sum add up covariance functions Zi Kj(x,x) 0
Prod multiply covariance functions [T &j(x,x") 0
PERard turn ARD stationary into a periodic, X C RP k(u(x),u(x’)) , u(x) = [sinxy, cosx,], x, = 2ndiag(p H)x | {lnpy, .., Inpp}
PERiso turn isotropic stationary into a periodic, X C RP k(u(x),u(x’)) , u(x) = [sinxp, cosxpl, xp = 21x/p Inp
Mask act on components I C [1,2,..,D] of x € X € RP only K(x1,x7) 0
ADD additive, X C RP, index degree set D ={1,.., D} 2 aep U%dz\l\:d TTicr k(xi,x{;01) {1,.,bp,Inoy . Inog, )
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The spectral mixture covariance covSM was introduced by Wilson & Adams|Gaussian Process Kernels
for Pattern Discovery and Extrapolation, ICML, 2013.

The periodic covariance functions covPERiso and covPERard start from a stationary isotropic or
ARD covariance function that depends on the data only through a distance 12 = (x—x') TA72(x—x)
such as covMatern#*, covPP*, covRQ*, covSE* where *=ard|iso and turn them into a periodic
covariance function by embedding the data x € RP into a periodic high-dimensional space Xp =
u(x) € R?P by a function u(x) = 2ndiag(p~!)x.

The additive covariance function covADD starts from a one-dimensional covariance function k(xi, x{, ;)
acting on a single component i € [1, .., D] of x. From that, we define covariance functions Ky (xy,x1) =
[ Ticr k(xi,x{, 1) acting on vector-valued inputs x1. The sums of exponential size can efficiently be
computed using the Newton-Girard formulae. Samples functions drawn from a GP with additive co-
variance are additive functions. The number of interacting variables |I| is a measure of how complex
the additive functions are.

6.3 Usage of Implemented Covariance Functions

Some code examples taken from doc/usageCov.m illustrate how to use simple and composite covari-
ance functions to specify a GP model.

Syntactically, a covariance function cf is defined by
cv := ’func’ | @func // simple

cf := {cv} | {cv, {param, cf}} | {cv, {cf, .., cf}} // composite
i.e., it is either a string containing the name of a covariance function, a pointer to a covariance func-
tion or one of the former in combination with a cell array of covariance functions and an additional
list of parameters.

(doc/usageCov.m |38)=

1 J, demonstrate usage of covariance functions

2 %

3 % See also covFunctions.m.

4%

5 (gpml copyright

6 clear all, close all

7n=25; D=3; x = randn(n,D); xs = randn(3,D); % create a data set
8

9 % set up simple covariance functions

10 en = {’covNoise’}; sn = .1; hypn = log(sn); 7 one hyperparameter
11 cc = {@covConst}; sf = 2; hypc = log(sf); % function handles 0K
12 ¢l = {@covLIN}; hypl = []; % linear is parameter-free
13 cla = {’covLINard’}; L = rand(D,1); hypla = log(L); % linear (ARD)
14 ¢1i = {’covLINiso’}; 1 = rand(1); hypli = log(l); % linear iso
15 clo = {@covLINone}; ell = .9; hyplo = log(ell); % linear with bias
16 cp = {@covPoly,3}; ¢ = 2; hypp = log(lc;sfl); % third order poly
17 cga = {Q@covSEard}; hypga = log([L;sfl); % Gaussian with ARD
18 cgi = {’covSEiso’}; hypgi = log(lell;sf]); % isotropic Gaussian
19 cgu = {’covSEisoU’}; hypgu = log(ell); % isotropic Gauss no scale

20 cra = {’covRQard’}; al = 2; hypra = log([L;sf;all); 7% ration. quad.

1 cri = {@covRQiso}; hypri = log(lell;sf;all); % isotropic

22 cma = {@covMaternard,5}; hypma = log([ell;sf]); ’ Matern class d=5
23 cmi = {’covMaterniso’,3}; hypmi = log([ell;sf]); % Matern class d=3
24 cnn = {’covNNone’}; hypnn = log([L;sf]); % neural network
25 cpe = {’covPeriodic’}; p = 2; hyppe = log([ell;p;sf]); % periodic
26 cpn = {’covPeriodicNoDC’}; p = 2; hyppe = log([ell;p;sfl); % w/o DC
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40

30
o1
52
53
o4
95
96
57
o8
99
60

cpc = {’covCos’}; p = 2; hypcpc = log([p;sfl); % cosine cov

cca = {’covPPard’,3}; hypcc
cci = {’covPPiso’,2}; hypcc
cgb = {@covGaboriso}; ell =

= hypm; % compact support poly degree 3
= hypm; % compact support poly degree 2
1; p = 1.2; hypgb=log(lell;pl); % Gabor

csm = {@covSM,4}; hypsm = log([w;m(:);v(:)]); % Spectral Mixture

% set up composite i.e. meta covariance functions

csc = {’covScale’,{cgul}; hypsc = [log(3); hypgul; 7% scale by 9
csu = {’covSum’,{cn,cc,cl}}; hypsu = [hypn; hypc; hypll; % sum
cpr = {@covProd,{cc,ccc}}; hyppr = [hypc; hypccl; % product

cma = {’covMask’,{mask,cgi{:}}}; hypma = hypgi;
% isotropic periodic rational quadratic

cpi = {’covPERiso’,{@covRQiso}};

% periodic Matern with ARD

cpa = {’covPERard’,{@covMaternard,3}};

" mask = [0,1,0]; % binary mask excluding all but the 2nd component

% additive based on SEiso using unary and pairwise interactions

cad = {’covADD?,{[1,2],’covSEiso’}};

5 % 0) specify a covariance function
" cov = cma; hyp = hypma;

% 1) query the number of parameters
feval(cov{:})

% 2) evaluate the function on x
feval(cov{:},hyp,x)

% 3) evaluate the function on x and xs to get cross-terms
kss = feval(cov{:},hyp,xs,’diag’)
Ks = feval(cov{:},hyp,x,xs)

% 4) compute the derivatives w.r.t. to hyperparameter i
i = 1; feval(cov{:},hyp,x,[],1)
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