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Chapter 4

Covariance Functions

We have seen that a covariance function is the crucial ingredient in a Gaussian
process predictor, as it encodes our assumptions about the function which we
wish to learn. From a slightly different viewpoint it is clear that in supervised
learning the notion of similarity between data points is crucial; it is a basic similarity

assumption that points with inputs x which are close are likely to have similar
target values y, and thus training points that are near to a test point should
be informative about the prediction at that point. Under the Gaussian process
view it is the covariance function that defines nearness or similarity.

An arbitrary function of input pairs x and x′ will not, in general, be a valid valid covariance
functionscovariance function.1 The purpose of this chapter is to give examples of some

commonly-used covariance functions and to examine their properties. Section
4.1 defines a number of basic terms relating to covariance functions. Section 4.2
gives examples of stationary, dot-product, and other non-stationary covariance
functions, and also gives some ways to make new ones from old. Section 4.3
introduces the important topic of eigenfunction analysis of covariance functions,
and states Mercer’s theorem which allows us to express the covariance function
(under certain conditions) in terms of its eigenfunctions and eigenvalues. The
covariance functions given in section 4.2 are valid when the input domain X is
a subset of RD. In section 4.4 we describe ways to define covariance functions
when the input domain is over structured objects such as strings and trees.

4.1 Preliminaries

A stationary covariance function is a function of x − x′. Thus it is invariant stationarity

to translations in the input space.2 For example the squared exponential co-
1To be a valid covariance function it must be positive semidefinite, see eq. (4.2).
2In stochastic process theory a process which has constant mean and whose covariance

function is invariant to translations is called weakly stationary. A process is strictly sta-
tionary if all of its finite dimensional distributions are invariant to translations [Papoulis,
1991, sec. 10.1].
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variance function given in equation 2.16 is stationary. If further the covariance
function is a function only of |x − x′| then it is called isotropic; it is thus in-isotropy

variant to all rigid motions. For example the squared exponential covariance
function given in equation 2.16 is isotropic. As k is now only a function of
r = |x− x′| these are also known as radial basis functions (RBFs).

If a covariance function depends only on x and x′ through x · x′ we call itdot product covariance

a dot product covariance function. A simple example is the covariance function
k(x,x′) = σ2

0 + x · x′ which can be obtained from linear regression by putting
N (0, 1) priors on the coefficients of xd (d = 1, . . . , D) and a prior of N (0, σ2

0)
on the bias (or constant function) 1, see eq. (2.15). Another important example
is the inhomogeneous polynomial kernel k(x,x′) = (σ2

0 + x · x′)p where p is a
positive integer. Dot product covariance functions are invariant to a rotation
of the coordinates about the origin, but not translations.

A general name for a function k of two arguments mapping a pair of inputskernel

x ∈ X , x′ ∈ X into R is a kernel. This term arises in the theory of integral
operators, where the operator Tk is defined as

(Tkf)(x) =
∫
X
k(x,x′)f(x′) dµ(x′), (4.1)

where µ denotes a measure; see section A.7 for further explanation of this point.3

A real kernel is said to be symmetric if k(x,x′) = k(x′,x); clearly covariance
functions must be symmetric from the definition.

Given a set of input points {xi|i = 1, . . . , n} we can compute the Gram
matrix K whose entries are Kij = k(xi,xj). If k is a covariance function weGram matrix

call the matrix K the covariance matrix.covariance matrix

A real n × n matrix K which satisfies Q(v) = v>Kv ≥ 0 for all vectors
v ∈ Rn is called positive semidefinite (PSD). If Q(v) = 0 only when v = 0positive semidefinite

the matrix is positive definite. Q(v) is called a quadratic form. A symmetric
matrix is PSD if and only if all of its eigenvalues are non-negative. A Gram
matrix corresponding to a general kernel function need not be PSD, but the
Gram matrix corresponding to a covariance function is PSD.

A kernel is said to be positive semidefinite if∫
k(x,x′)f(x)f(x′) dµ(x) dµ(x′) ≥ 0, (4.2)

for all f ∈ L2(X , µ). Equivalently a kernel function which gives rise to PSD
Gram matrices for any choice of n ∈ N and D is positive semidefinite. To
see this let f be the weighted sum of delta functions at each xi. Since such
functions are limits of functions in L2(X , µ) eq. (4.2) implies that the Gram
matrix corresponding to any D is PSD.

For a one-dimensional Gaussian process one way to understand the charac-
teristic length-scale of the process (if this exists) is in terms of the number ofupcrossing rate

upcrossings of a level u. Adler [1981, Theorem 4.1.1] states that the expected

3Informally speaking, readers will usually be able to substitute dx or p(x)dx for dµ(x).
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number of upcrossings E[Nu] of the level u on the unit interval by a zero-mean,
stationary, almost surely continuous Gaussian process is given by

E[Nu] =
1
2π

√
−k′′(0)
k(0)

exp
(
− u2

2k(0)

)
. (4.3)

If k′′(0) does not exist (so that the process is not mean square differentiable)
then if such a process has a zero at x0 then it will almost surely have an infinite
number of zeros in the arbitrarily small interval (x0, x0 +δ) [Blake and Lindsey,
1973, p. 303].

4.1.1 Mean Square Continuity and Differentiability ∗

We now describe mean square continuity and differentiability of stochastic pro-
cesses, following Adler [1981, sec. 2.2]. Let x1,x2, . . . be a sequence of points
and x∗ be a fixed point in RD such that |xk − x∗| → 0 as k → ∞. Then a
process f(x) is continuous in mean square at x∗ if E[|f(xk) − f(x∗)|2] → 0 as mean square continuity

k →∞. If this holds for all x∗ ∈ A where A is a subset of RD then f(x) is said
to be continuous in mean square (MS) over A. A random field is continuous in
mean square at x∗ if and only if its covariance function k(x,x′) is continuous
at the point x = x′ = x∗. For stationary covariance functions this reduces
to checking continuity at k(0). Note that MS continuity does not necessarily
imply sample function continuity; for a discussion of sample function continuity
and differentiability see Adler [1981, ch. 3].

The mean square derivative of f(x) in the ith direction is defined as

∂f(x)
∂xi

= l. i.m
h→0

f(x + hei)− f(x)
h

, (4.4)

when the limit exists, where l.i.m denotes the limit in mean square and ei mean square
differentiabilityis the unit vector in the ith direction. The covariance function of ∂f(x)/∂xi

is given by ∂2k(x,x′)/∂xi∂x
′
i. These definitions can be extended to higher

order derivatives. For stationary processes, if the 2kth-order partial derivative
∂2kk(x)/∂2xi1 . . . ∂

2xik
exists and is finite at x = 0 then the kth order partial

derivative ∂kf(x)/∂xi1 . . . xik
exists for all x ∈ RD as a mean square limit.

Notice that it is the properties of the kernel k around 0 that determine the
smoothness properties (MS differentiability) of a stationary process.

4.2 Examples of Covariance Functions

In this section we consider covariance functions where the input domain X is
a subset of the vector space RD. More general input spaces are considered in
section 4.4. We start in section 4.2.1 with stationary covariance functions, then
consider dot-product covariance functions in section 4.2.2 and other varieties
of non-stationary covariance functions in section 4.2.3. We give an overview
of some commonly used covariance functions in Table 4.1 and in section 4.2.4
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we describe general methods for constructing new kernels from old. There
exist several other good overviews of covariance functions, see e.g. Abrahamsen
[1997].

4.2.1 Stationary Covariance Functions

In this section (and section 4.3) it will be convenient to allow kernels to be a map
from x ∈ X , x′ ∈ X into C (rather than R). If a zero-mean process f is complex-
valued, then the covariance function is defined as k(x,x′) = E[f(x)f∗(x′)],
where ∗ denotes complex conjugation.

A stationary covariance function is a function of τ = x− x′. Sometimes in
this case we will write k as a function of a single argument, i.e. k(τ ).

The covariance function of a stationary process can be represented as the
Fourier transform of a positive finite measure.

Theorem 4.1 (Bochner’s theorem) A complex-valued function k on RD is theBochner’s theorem

covariance function of a weakly stationary mean square continuous complex-
valued random process on RD if and only if it can be represented as

k(τ ) =
∫

RD

e2πis·τ dµ(s) (4.5)

where µ is a positive finite measure. �

The statement of Bochner’s theorem is quoted from Stein [1999, p. 24]; a proof
can be found in Gihman and Skorohod [1974, p. 208]. If µ has a density S(s)spectral density

power spectrum then S is known as the spectral density or power spectrum corresponding to k.

The construction given by eq. (4.5) puts non-negative power into each fre-
quency s; this is analogous to the requirement that the prior covariance matrix
Σp on the weights in equation 2.4 be non-negative definite.

In the case that the spectral density S(s) exists, the covariance function and
the spectral density are Fourier duals of each other as shown in eq. (4.6);4 this
is known as the Wiener-Khintchine theorem, see, e.g. Chatfield [1989]

k(τ ) =
∫
S(s)e2πis·τ ds, S(s) =

∫
k(τ )e−2πis·τ dτ . (4.6)

Notice that the variance of the process is k(0) =
∫
S(s) ds so the power spectrum

must be integrable to define a valid Gaussian process.

To gain some intuition for the definition of the power spectrum given in
eq. (4.6) it is important to realize that the complex exponentials e2πis·x are
eigenfunctions of a stationary kernel with respect to Lebesgue measure (see
section 4.3 for further details). Thus S(s) is, loosely speaking, the amount of
power allocated on average to the eigenfunction e2πis·x with frequency s. S(s)
must eventually decay sufficiently fast as |s| → ∞ so that it is integrable; the

4See Appendix A.8 for details of Fourier transforms.
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rate of this decay of the power spectrum gives important information about
the smoothness of the associated stochastic process. For example it can deter-
mine the mean-square differentiability of the process (see section 4.3 for further
details).

If the covariance function is isotropic (so that it is a function of r, where
r = |τ |) then it can be shown that S(s) is a function of s , |s| only [Adler,
1981, Theorem 2.5.2]. In this case the integrals in eq. (4.6) can be simplified
by changing to spherical polar coordinates and integrating out the angular
variables (see e.g. Bracewell, 1986, ch. 12) to obtain

k(r) =
2π

rD/2−1

∫ ∞

0

S(s)JD/2−1(2πrs)sD/2 ds, (4.7)

S(s) =
2π

sD/2−1

∫ ∞

0

k(r)JD/2−1(2πrs)rD/2 dr, (4.8)

where JD/2−1 is a Bessel function of orderD/2−1. Note that the dependence on
the dimensionality D in equation 4.7 means that the same isotropic functional
form of the spectral density can give rise to different isotropic covariance func-
tions in different dimensions. Similarly, if we start with a particular isotropic
covariance function k(r) the form of spectral density will in general depend on
D (see, e.g. the Matérn class spectral density given in eq. (4.15)) and in fact
k(r) may not be valid for all D. A necessary condition for the spectral density
to exist is that

∫
rD−1|k(r)| dr <∞; see Stein [1999, sec. 2.10] for more details.

We now give some examples of commonly-used isotropic covariance func-
tions. The covariance functions are given in a normalized form where k(0) = 1;
we can multiply k by a (positive) constant σ2

f to get any desired process vari-
ance.

Squared Exponential Covariance Function

The squared exponential (SE) covariance function has already been introduced squared exponential

in chapter 2, eq. (2.16) and has the form

kSE(r) = exp
(
− r2

2`2
)
, (4.9)

with parameter ` defining the characteristic length-scale. Using eq. (4.3) we characteristic
length-scalesee that the mean number of level-zero upcrossings for a SE process in 1-

d is (2π`)−1, which confirms the rôle of ` as a length-scale. This covari-
ance function is infinitely differentiable, which means that the GP with this
covariance function has mean square derivatives of all orders, and is thus
very smooth. The spectral density of the SE covariance function is S(s) =
(2π`2)D/2 exp(−2π2`2s2). Stein [1999] argues that such strong smoothness
assumptions are unrealistic for modelling many physical processes, and rec-
ommends the Matérn class (see below). However, the squared exponential is
probably the most widely-used kernel within the kernel machines field.
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The SE kernel is infinitely divisible in that (k(r))t is a valid kernel for allinfinitely divisible

t > 0; the effect of raising k to the power of t is simply to rescale `.

We now digress briefly, to show that the squared exponential covariance
function can also be obtained by expanding the input x into a feature space
defined by Gaussian-shaped basis functions centered densely in x-space. Forinfinite network

construction for SE
covariance function

simplicity of exposition we consider scalar inputs with basis functions

φc(x) = exp
(
− (x− c)2

2`2
)
, (4.10)

where c denotes the centre of the basis function. From sections 2.1 and 2.2 we
recall that with a Gaussian prior on the weights w ∼ N (0, σ2

pI), this gives rise
to a GP with covariance function

k(xp, xq) = σ2
p

N∑
c=1

φc(xp)φc(xq). (4.11)

Now, allowing an infinite number of basis functions centered everywhere on an
interval (and scaling down the variance of the prior on the weights with the
number of basis functions) we obtain the limit

lim
N→∞

σ2
p

N

N∑
c=1

φc(xp)φc(xq) = σ2
p

∫ cmax

cmin

φc(xp)φc(xq)dc. (4.12)

Plugging in the Gaussian-shaped basis functions eq. (4.10) and letting the in-
tegration limits go to infinity we obtain

k(xp, xq) = σ2
p

∫ ∞

−∞
exp

(
− (xp − c)2

2`2
)
exp

(
− (xq − c)2

2`2
)
dc

=
√
π`σ2

p exp
(
− (xp − xq)2

2(
√

2`)2
)
,

(4.13)

which we recognize as a squared exponential covariance function with a
√

2
times longer length-scale. The derivation is adapted from MacKay [1998]. It
is straightforward to generalize this construction to multivariate x. See also
eq. (4.30) for a similar construction where the centres of the basis functions are
sampled from a Gaussian distribution; the constructions are equivalent when
the variance of this Gaussian tends to infinity.

The Matérn Class of Covariance Functions

The Matérn class of covariance functions is given byMatérn class

kMatern(r) =
21−ν

Γ(ν)

(√2νr
`

)ν

Kν

(√2νr
`

)
, (4.14)

with positive parameters ν and `, where Kν is a modified Bessel function
[Abramowitz and Stegun, 1965, sec. 9.6]. This covariance function has a spectral
density

S(s) =
2DπD/2Γ(ν +D/2)(2ν)ν

Γ(ν)`2ν

(2ν
`2

+ 4π2s2
)−(ν+D/2)

(4.15)
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for different values of
ν, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ν →∞ we obtain
the SE covariance function e−r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS differentiable if and only if ν > k. The Matérn covariance
functions become especially simple when ν is half-integer: ν = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving

kν=p+1/2(r) = exp
(
−
√

2νr
`

) Γ(p+ 1)
Γ(2p+ 1)

p∑
i=0

(p+ i)!
i!(p− i)!

(√8νr
`

)p−i

. (4.16)

It is possible that the most interesting cases for machine learning are ν = 3/2
and ν = 5/2, for which

kν=3/2(r) =
(
1 +
√

3r
`

)
exp

(
−
√

3r
`

)
,

kν=5/2(r) =
(
1 +
√

5r
`

+
5r2

3`2
)

exp
(
−
√

5r
`

)
,

(4.17)

since for ν = 1/2 the process becomes very rough (see below), and for ν ≥ 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ν ≥ 7/2 (or even to distinguish between finite
values of ν and ν → ∞, the smooth squared exponential, in this case). For
example a value of ν = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ν = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(−r/`). The corresponding process
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Figure 4.2: Panel (a) covariance functions, and (b) random functions drawn from
Gaussian processes with the γ-exponential covariance function eq. (4.18), for different
values of γ, with ` = 1. The sample functions are only differentiable when γ = 2 (the
SE case). The sample functions on the right were obtained using a discretization of
the x-axis of 2000 equally-spaced points.

is MS continuous but not MS differentiable. In D = 1 this is the covariance
function of the Ornstein-Uhlenbeck (OU) process. The OU process [UhlenbeckOrnstein-Uhlenbeck

process and Ornstein, 1930] was introduced as a mathematical model of the velocity
of a particle undergoing Brownian motion. More generally in D = 1 setting
ν + 1/2 = p for integer p gives rise to a particular form of a continuous-time
AR(p) Gaussian process; for further details see section B.2.1. The form of the
Matérn covariance function and samples drawn from it for ν = 1/2, ν = 2 and
ν →∞ are illustrated in Figure 4.1.

The γ-exponential Covariance Function

The γ-exponential family of covariance functions, which includes both the ex-γ-exponential

ponential and squared exponential, is given by

k(r) = exp
(
− (r/`)γ

)
for 0 < γ ≤ 2. (4.18)

Although this function has a similar number of parameters to the Matérn class,
it is (as Stein [1999] notes) in a sense less flexible. This is because the corre-
sponding process is not MS differentiable except when γ = 2 (when it is in-
finitely MS differentiable). The covariance function and random samples from
the process are shown in Figure 4.2. A proof of the positive definiteness of this
covariance function can be found in Schoenberg [1938].

Rational Quadratic Covariance Function

The rational quadratic (RQ) covariance functionrational quadratic

kRQ(r) =
(
1 +

r2

2α`2
)−α

(4.19)



C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 87

0 1 2 3
0

0.2

0.4

0.6

0.8

1

input distance

co
va

ria
nc

e

α=1/2
α=2
α→∞

−5 0 5
−3

−2

−1

0

1

2

3

input, x
ou

tp
ut

, f
(x

)

(a) (b)

Figure 4.3: Panel (a) covariance functions, and (b) random functions drawn from
Gaussian processes with rational quadratic covariance functions, eq. (4.20), for differ-
ent values of α with ` = 1. The sample functions on the right were obtained using a
discretization of the x-axis of 2000 equally-spaced points.

with α, ` > 0 can be seen as a scale mixture (an infinite sum) of squared scale mixture

exponential (SE) covariance functions with different characteristic length-scales
(sums of covariance functions are also a valid covariance, see section 4.2.4).
Parameterizing now in terms of inverse squared length scales, τ = `−2, and
putting a gamma distribution on p(τ |α, β) ∝ τα−1 exp(−ατ/β),5 we can add
up the contributions through the following integral

kRQ(r) =
∫
p(τ |α, β)kSE(r|τ) dτ

∝
∫
τα−1 exp

(
− ατ

β

)
exp

(
− τr2

2

)
dτ ∝

(
1 +

r2

2α`2
)−α

,

(4.20)

where we have set β−1 = `2. The rational quadratic is also discussed by Matérn
[1960, p. 17] using a slightly different parameterization; in our notation the limit
of the RQ covariance for α→∞ (see eq. (A.25)) is the SE covariance function
with characteristic length-scale `, eq. (4.9). Figure 4.3 illustrates the behaviour
for different values of α; note that the process is infinitely MS differentiable for
every α in contrast to the Matérn covariance function in Figure 4.1.

The previous example is a special case of kernels which can be written as
superpositions of SE kernels with a distribution p(`) of length-scales `, k(r) =∫

exp(−r2/2`2)p(`) d`. This is in fact the most general representation for an
isotropic kernel which defines a valid covariance function in any dimension D,
see [Stein, 1999, sec. 2.10].

Piecewise Polynomial Covariance Functions with Compact Support

A family of piecewise polynomial functions with compact support provide an- piecewise polynomial
covariance functions

with compact support
other interesting class of covariance functions. Compact support means that

5Note that there are several common ways to parameterize the Gamma distribution—our
choice is convenient here: α is the “shape” and β is the mean.
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Figure 4.4: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with piecewise polynomial covariance functions with compact sup-
port from eq. (4.21), with specified parameters.

the covariance between points become exactly zero when their distance exceeds
a certain threshold. This means that the covariance matrix will become sparse
by construction, leading to the possibility of computational advantages.6 The
challenge in designing these functions is how to guarantee positive definite-positive definiteness

ness. Multiple algorithms for deriving such covariance functions are discussed
by Wendland [2005, ch. 9]. These functions are usually not positive definite
for all input dimensions, but their validity is restricted up to some maximumrestricted dimension

dimension D. Below we give examples of covariance functions kppD,q(r) which
are positive definite in RD

kppD,0(r) = (1− r)j
+, where j = bD

2 c+ q + 1,

kppD,1(r) = (1− r)j+1
+

(
(j + 1)r + 1

)
,

kppD,2(r) = (1− r)j+2
+

(
(j2 + 4j + 3)r2 + (3j + 6)r + 3

)
/3,

kppD,3(r) = (1− r)j+3
+

(
(j3 + 9j2 + 23j + 15)r3+

(6j2 + 36j + 45)r2 + (15j + 45)r + 15
)
/15.

(4.21)

The properties of three of these covariance functions are illustrated in Fig-
ure 4.4. These covariance functions are 2q-times continuously differentiable,
and thus the corresponding processes are q-times mean-square differentiable,
see section 4.1.1. It is interesting to ask to what extent one could use the
compactly-supported covariance functions described above in place of the other
covariance functions mentioned in this section, while obtaining inferences that
are similar. One advantage of the compact support is that it gives rise to spar-
sity of the Gram matrix which could be exploited, for example, when using
iterative solutions to GPR problem, see section 8.3.6.

6If the product of the inverse covariance matrix with a vector (needed e.g. for prediction)
is computed using a conjugate gradient algorithm, then products of the covariance matrix
with vectors are the basic computational unit, and these can obviously be carried out much
faster if the matrix is sparse.
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Further Properties of Stationary Covariance Functions

The covariance functions given above decay monotonically with r and are always
positive. However, this is not a necessary condition for a covariance function.
For example Yaglom [1987] shows that k(r) = c(αr)−νJν(αr) is a valid covari-
ance function for ν ≥ (D − 2)/2 and α > 0; this function has the form of a
damped oscillation.

Anisotropic versions of these isotropic covariance functions can be created anisotropy

by setting r2(x,x′) = (x − x′)>M(x − x′) for some positive semidefinite M .
If M is diagonal this implements the use of different length-scales on different
dimensions—for further discussion of automatic relevance determination see
section 5.1. General M ’s have been considered by Matérn [1960, p. 19], Poggio
and Girosi [1990] and also in Vivarelli and Williams [1999]; in the latter work a
low-rank M was used to implement a linear dimensionality reduction step from
the input space to lower-dimensional feature space. More generally, one could
assume the form

M = ΛΛ> + Ψ (4.22)

where Λ is a D× k matrix whose columns define k directions of high relevance,
and Ψ is a diagonal matrix (with positive entries), capturing the (usual) axis-
aligned relevances, see also Figure 5.1 on page 107. ThusM has a factor analysis factor analysis distance

form. For appropriate choices of k this may represent a good trade-off between
flexibility and required number of parameters.

Stationary kernels can also be defined on a periodic domain, and can be
readily constructed from stationary kernels on R. Given a stationary kernel
k(x), the kernel kT(x) =

∑
m∈Z k(x+ml) is periodic with period l, as shown in periodization

section B.2.2 and Schölkopf and Smola [2002, eq. 4.42].

4.2.2 Dot Product Covariance Functions

As we have already mentioned above the kernel k(x,x′) = σ2
0 + x · x′ can

be obtained from linear regression. If σ2
0 = 0 we call this the homogeneous

linear kernel, otherwise it is inhomogeneous. Of course this can be generalized
to k(x,x′) = σ2

0 + x>Σpx′ by using a general covariance matrix Σp on the
components of x, as described in eq. (2.4).7 It is also the case that k(x,x′) =
(σ2

0 + x>Σpx′)p is a valid covariance function for positive integer p, because of
the general result that a positive-integer power of a given covariance function is
also a valid covariance function, as described in section 4.2.4. However, it is also
interesting to show an explicit feature space construction for the polynomial
covariance function. We consider the homogeneous polynomial case as the
inhomogeneous case can simply be obtained by considering x to be extended

7Indeed the bias term could also be included in the general expression.
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by concatenating a constant. We write

k(x,x′) = (x · x′)p =
( D∑

d=1

xdx
′
d

)p

=
( D∑

d1=1

xd1x
′
d1

)
· · ·
( D∑

dp=1

xdp
x′dp

)

=
D∑

d1=1

· · ·
D∑

dp=1

(xd1 · · ·xdp
)(x′d1

· · ·x′dp
) , φ(x) · φ(x′). (4.23)

Notice that this sum apparently contains Dp terms but in fact it is less than this
as the order of the indices in the monomial xd1 · · ·xdp

is unimportant, e.g. for
p = 2, x1x2 and x2x1 are the same monomial. We can remove the redundancy
by defining a vector m whose entry md specifies the number of times index
d appears in the monomial, under the constraint that

∑D
i=1mi = p. Thus

φm(x), the feature corresponding to vector m is proportional to the monomial
xm1

1 . . . xmD

D . The degeneracy of φm(x) is p!
m1!...mD! (where as usual we define

0! = 1), giving the feature map

φm(x) =
√

p!
m1! · · ·mD!

xm1
1 · · ·x

mD

D . (4.24)

For example, for p = 2 in D = 2, we have φ(x) = (x2
1, x

2
2,
√

2x1x2)>. Dot-
product kernels are sometimes used in a normalized form given by eq. (4.35).

For regression problems the polynomial kernel is a rather strange choice as
the prior variance grows rapidly with |x| for |x| > 1. However, such kernels
have proved effective in high-dimensional classification problems (e.g. take x
to be a vectorized binary image) where the input data are binary or greyscale
normalized to [−1, 1] on each dimension [Schölkopf and Smola, 2002, sec. 7.8].

4.2.3 Other Non-stationary Covariance Functions

Above we have seen examples of non-stationary dot product kernels. However,
there are also other interesting kernels which are not of this form. In this section
we first describe the covariance function belonging to a particular type of neural
network; this construction is due to Neal [1996].

Consider a network which takes an input x, has one hidden layer with NH

units and then linearly combines the outputs of the hidden units with a bias b
to obtain f(x). The mapping can be written

f(x) = b+
NH∑
j=1

vjh(x;uj), (4.25)

where the vjs are the hidden-to-output weights and h(x;u) is the hidden unit
transfer function (which we shall assume is bounded) which depends on the
input-to-hidden weights u. For example, we could choose h(x;u) = tanh(x ·u).
This architecture is important because it has been shown by Hornik [1993] that
networks with one hidden layer are universal approximators as the number of
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hidden units tends to infinity, for a wide class of transfer functions (but exclud-
ing polynomials). Let b and the v’s have independent zero-mean distributions
of variance σ2

b and σ2
v , respectively, and let the weights uj for each hidden unit

be independently and identically distributed. Denoting all weights by w, we
obtain (following Neal [1996])

Ew[f(x)] = 0 (4.26)

Ew[f(x)f(x′)] = σ2
b +

∑
j

σ2
vEu[h(x;uj)h(x′;uj)] (4.27)

= σ2
b +NHσ

2
vEu[h(x;u)h(x′;u)], (4.28)

where eq. (4.28) follows because all of the hidden units are identically dis-
tributed. The final term in equation 4.28 becomes ω2Eu[h(x;u)h(x′;u)] by
letting σ2

v scale as ω2/NH .

The sum in eq. (4.27) is over NH identically and independently distributed
random variables. As the transfer function is bounded, all moments of the
distribution will be bounded and hence the central limit theorem can be applied,
showing that the stochastic process will converge to a Gaussian process in the
limit as NH →∞.

By evaluating Eu[h(x;u)h(x′;u)] we can obtain the covariance function of
the neural network. For example if we choose the error function h(z) = erf(z) = neural network

covariance function2/
√
π
∫ z

0
e−t2 dt as the transfer function, let h(x;u) = erf(u0 +

∑D
j=1ujxj) and

choose u ∼ N (0,Σ) then we obtain [Williams, 1998]

kNN(x,x′) =
2
π

sin−1
( 2x̃>Σx̃′√

(1 + 2x̃>Σx̃)(1 + 2x̃′>Σx̃′)

)
, (4.29)

where x̃ = (1, x1, . . . , xd)> is an augmented input vector. This is a true “neural
network” covariance function. The “sigmoid” kernel k(x,x′) = tanh(a+ bx ·x′)
has sometimes been proposed, but in fact this kernel is never positive defi-
nite and is thus not a valid covariance function, see, e.g. Schölkopf and Smola
[2002, p. 113]. Figure 4.5 shows a plot of the neural network covariance function
and samples from the prior. We have set Σ = diag(σ2

0 , σ
2). Samples from a GP

with this covariance function can be viewed as superpositions of the functions
erf(u0+ux), where σ2

0 controls the variance of u0 (and thus the amount of offset
of these functions from the origin), and σ2 controls u and thus the scaling on
the x-axis. In Figure 4.5(b) we observe that the sample functions with larger σ
vary more quickly. Notice that the samples display the non-stationarity of the
covariance function in that for large values of +x or −x they should tend to a
constant value, consistent with the construction as a superposition of sigmoid
functions.

Another interesting construction is to set h(x;u) = exp(−|x − u|2/2σ2
g), modulated squared

exponentialwhere σg sets the scale of this Gaussian basis function. With u ∼ N (0, σ2
uI)
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Figure 4.5: Panel (a): a plot of the covariance function kNN(x, x′) for σ0 = 10, σ = 10.
Panel (b): samples drawn from the neural network covariance function with σ0 = 2
and σ as shown in the legend. The samples were obtained using a discretization of
the x-axis of 500 equally-spaced points.

we obtain

kG(x,x′) =
1

(2πσ2
u)d/2

∫
exp

(
− |x− u|2

2σ2
g

− |x
′ − u|2

2σ2
g

− u>u
2σ2

u

)
du

=
(σe

σu

)d

exp
(
− x>x

2σ2
m

)
exp

(
− |x− x′|2

2σ2
s

)
exp

(
− x′>x′

2σ2
m

)
,

(4.30)

where 1/σ2
e = 2/σ2

g + 1/σ2
u, σ2

s = 2σ2
g + σ4

g/σ
2
u and σ2

m = 2σ2
u + σ2

g . This is
in general a non-stationary covariance function, but if σ2

u → ∞ (while scaling
ω2 appropriately) we recover the squared exponential kG(x,x′) ∝ exp(−|x −
x′|2/4σ2

g). For a finite value of σ2
u, kG(x,x′) comprises a squared exponen-

tial covariance function modulated by the Gaussian decay envelope function
exp(−x>x/2σ2

m) exp(−x′>x′/2σ2
m), cf. the vertical rescaling construction de-

scribed in section 4.2.4.

One way to introduce non-stationarity is to introduce an arbitrary non-linear
mapping (or warping) u(x) of the input x and then use a stationary covariancewarping

function in u-space. Note that x and u need not have the same dimensionality as
each other. This approach was used by Sampson and Guttorp [1992] to model
patterns of solar radiation in southwestern British Columbia using Gaussian
processes.

Another interesting example of this warping construction is given in MacKay
[1998] where the one-dimensional input variable x is mapped to the two-dimensional
u(x) = (cos(x), sin(x)) to give rise to a periodic random function of x. If weperiodic random

function use the squared exponential kernel in u-space, then

k(x, x′) = exp
(
−

2 sin2
(

x−x′

2

)
`2

)
, (4.31)

as (cos(x)− cos(x′))2 + (sin(x)− sin(x′))2 = 4 sin2(x−x′

2 ).
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Figure 4.6: Panel (a) shows the chosen length-scale function `(x). Panel (b) shows
three samples from the GP prior using Gibbs’ covariance function eq. (4.32). This
figure is based on Fig. 3.9 in Gibbs [1997].

We have described above how to make an anisotropic covariance function varying length-scale

by scaling different dimensions differently. However, we are not free to make
these length-scales `d be functions of x, as this will not in general produce a
valid covariance function. Gibbs [1997] derived the covariance function

k(x,x′) =
D∏

d=1

( 2`d(x)`d(x′)
`2d(x) + `2d(x′)

)1/2

exp
(
−

D∑
d=1

(xd − x′d)2

`2d(x) + `2d(x′)

)
, (4.32)

where each `i(x) is an arbitrary positive function of x. Note that k(x,x) = 1
for all x. This covariance function is obtained by considering a grid of N
Gaussian basis functions with centres cj and a corresponding length-scale on
input dimension d which varies as a positive function `d(cj). Taking the limit
as N → ∞ the sum turns into an integral and after some algebra eq. (4.32) is
obtained.

An example of a variable length-scale function and samples from the prior
corresponding to eq. (4.32) are shown in Figure 4.6. Notice that as the length-
scale gets shorter the sample functions vary more rapidly as one would expect.
The large length-scale regions on either side of the short length-scale region can
be quite strongly correlated. If one tries the converse experiment by creating
a length-scale function `(x) which has a longer length-scale region between
two shorter ones then the behaviour may not be quite what is expected; on
initially transitioning into the long length-scale region the covariance drops off
quite sharply due to the prefactor in eq. (4.32), before stabilizing to a slower
variation. See Gibbs [1997, sec. 3.10.3] for further details. Exercises 4.5.4 and
4.5.5 invite you to investigate this further.

Paciorek and Schervish [2004] have generalized Gibbs’ construction to obtain
non-stationary versions of arbitrary isotropic covariance functions. Let kS be a
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covariance function expression S ND

constant σ2
0

√

linear
∑D

d=1 σ
2
dxdx

′
d

polynomial (x · x′ + σ2
0)p

squared exponential exp(− r2

2`2 )
√ √

Matérn 1
2ν−1Γ(ν)

(√
2ν
` r
)ν

Kν

(√
2ν
` r
) √ √

exponential exp(− r
` )

√ √

γ-exponential exp
(
− ( r

` )γ
) √ √

rational quadratic (1 + r2

2α`2 )−α √ √

neural network sin−1
(

2x̃>Σx̃′√
(1+2x̃>Σx̃)(1+2x̃′>Σx̃′)

) √

Table 4.1: Summary of several commonly-used covariance functions. The covariances
are written either as a function of x and x′, or as a function of r = |x − x′|. Two
columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see
section 4.3 for more discussion of this issue.

stationary, isotropic covariance function that is valid in every Euclidean space
RD for D = 1, 2, . . .. Let Σ(x) be a D × D matrix-valued function which
is positive definite for all x, and let Σi , Σ(xi). (The set of Gibbs’ `i(x)
functions define a diagonal Σ(x).) Then define the quadratic form

Qij = (xi − xj)>((Σi + Σj)/2)−1(xi − xj). (4.33)

Paciorek and Schervish [2004] show that

kNS(xi,xj) = 2D/2|Σi|1/4|Σj |1/4|Σi + Σj |−1/2kS(
√
Qij), (4.34)

is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
φ(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
different values of w to be appropriate in different regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x′)) = W0kw(x,x′) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x′) = φ(x)>W0φ(x′)kw(x,x′).

Finally we note that the Wiener process with covariance function k(x, x′) =
min(x, x′) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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The sum of two kernels is a kernel. Proof: consider the random process sum

f(x) = f1(x) + f2(x), where f1(x) and f2(x) are independent. Then k(x,x′) =
k1(x,x′)+ k2(x,x′). This construction can be used e.g. to add together kernels
with different characteristic length-scales.

The product of two kernels is a kernel. Proof: consider the random process
f(x) = f1(x)f2(x), where f1(x) and f2(x) are independent. Then k(x,x′) = product

k1(x,x′)k2(x,x′).8 A simple extension of this argument means that kp(x,x′) is
a valid covariance function for p ∈ N.

Let a(x) be a given deterministic function and consider g(x) = a(x)f(x)
where f(x) is a random process. Then cov(g(x), g(x′)) = a(x)k(x,x′)a(x′). vertical rescaling

Such a construction can be used to normalize kernels by choosing a(x) =
k−1/2(x,x) (assuming k(x,x) > 0 ∀x), so that

k̃(x,x′) =
k(x,x′)√

k(x,x)
√
k(x′,x′)

. (4.35)

This ensures that k̃(x,x) = 1 for all x.

We can also obtain a new process by convolution (or blurring). Consider
an arbitrary fixed kernel h(x, z) and the map g(x) =

∫
h(x, z)f(z) dz. Then convolution

clearly cov(g(x), g(x′)) =
∫
h(x, z)k(z, z′)h(x′, z′) dz dz′.

If k(x1,x′1) and k(x2,x′2) are covariance functions over different spaces X1

and X2, then the direct sum k(x,x′) = k1(x1,x′1) + k2(x2,x′2) and the tensor direct sum

tensor productproduct k(x,x′) = k1(x1,x′1)k2(x2,x′2) are also covariance functions (defined
on the product space X1×X2), by virtue of the sum and product constructions.

The direct sum construction can be further generalized. Consider a func-
tion f(x), where x is D-dimensional. An additive model [Hastie and Tib-
shirani, 1990] has the form f(x) = c +

∑D
i=1fi(xi), i.e. a linear combina- additive model

tion of functions of one variable. If the individual fi’s are taken to be in-
dependent stochastic processes, then the covariance function of f will have the
form of a direct sum. If we now admit interactions of two variables, so that
f(x) = c +

∑D
i=1fi(xi) +

∑
ij,j<i fij(xi, xj) and the various fi’s and fij ’s are

independent stochastic processes, then the covariance function will have the
form k(x,x′) =

∑D
i=1ki(xi, x

′
i) +

∑D
i=2

∑i−1
j=1 kij(xi, xj ;x′i, x

′
j). Indeed this pro-

cess can be extended further to provide a functional ANOVA9 decomposition,
ranging from a simple additive model up to full interaction of all D input vari- functional ANOVA

ables. (The sum can also be truncated at some stage.) Wahba [1990, ch. 10]
and Stitson et al. [1999] suggest using tensor products for kernels with inter-
actions so that in the example above kij(xi, xj ;x′i, x

′
j) would have the form

ki(xi;x′i)kj(xj ;x′j). Note that if D is large then the large number of pairwise
(or higher-order) terms may be problematic; Plate [1999] has investigated using
a combination of additive GP models plus a general covariance function that
permits full interactions.

8If f1 and f2 are Gaussian processes then the product f will not in general be a Gaussian
process, but there exists a GP with this covariance function.

9ANOVA stands for analysis of variance, a statistical technique that analyzes the interac-
tions between various attributes.
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4.3 Eigenfunction Analysis of Kernels

We first define eigenvalues and eigenfunctions and discuss Mercer’s theorem
which allows us to express the kernel (under certain conditions) in terms of these
quantities. Section 4.3.1 gives the analytical solution of the eigenproblem for the
SE kernel under a Gaussian measure. Section 4.3.2 discusses how to compute
approximate eigenfunctions numerically for cases where the exact solution is
not known.

It turns out that Gaussian process regression can be viewed as Bayesian
linear regression with a possibly infinite number of basis functions, as discussed
in chapter 2. One possible basis set is the eigenfunctions of the covariance
function. A function φ(·) that obeys the integral equation∫

k(x,x′)φ(x) dµ(x) = λφ(x′), (4.36)

is called an eigenfunction of kernel k with eigenvalue λ with respect to measure10eigenvalue,
eigenfunction µ. The two measures of particular interest to us will be (i) Lebesgue measure

over a compact subset C of RD, or (ii) when there is a density p(x) so that
dµ(x) can be written p(x)dx.

In general there are an infinite number of eigenfunctions, which we label
φ1(x), φ2(x), . . . We assume the ordering is chosen such that λ1 ≥ λ2 ≥ . . ..
The eigenfunctions are orthogonal with respect to µ and can be chosen to be
normalized so that

∫
φi(x)φj(x) dµ(x) = δij where δij is the Kronecker delta.

Mercer’s theorem (see, e.g. König, 1986) allows us to express the kernel kMercer’s theorem

in terms of the eigenvalues and eigenfunctions.

Theorem 4.2 (Mercer’s theorem). Let (X , µ) be a finite measure space and
k ∈ L∞(X 2, µ2) be a kernel such that Tk : L2(X , µ) → L2(X , µ) is positive
definite (see eq. (4.2)). Let φi ∈ L2(X , µ) be the normalized eigenfunctions of
Tk associated with the eigenvalues λi > 0. Then:

1. the eigenvalues {λi}∞i=1 are absolutely summable

2.

k(x,x′) =
∞∑

i=1

λiφi(x)φ∗i (x
′), (4.37)

holds µ2 almost everywhere, where the series converges absolutely and
uniformly µ2 almost everywhere. �

This decomposition is just the infinite-dimensional analogue of the diagonaliza-
tion of a Hermitian matrix. Note that the sum may terminate at some value
N ∈ N (i.e. the eigenvalues beyond N are zero), or the sum may be infinite.
We have the following definition [Press et al., 1992, p. 794]

10For further explanation of measure see Appendix A.7.
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Definition 4.1 A degenerate kernel has only a finite number of non-zero eigen-
values. �

A degenerate kernel is also said to have finite rank. If a kernel is not degenerate degenerate,
nondegenerate

kernel
it is said to be nondegenerate. As an example a N -dimensional linear regression
model in feature space (see eq. (2.10)) gives rise to a degenerate kernel with at
most N non-zero eigenvalues. (Of course if the measure only puts weight on a
finite number of points n in x-space then the eigendecomposition is simply that
of a n× n matrix, even if the kernel is nondegenerate.)

The statement of Mercer’s theorem above referred to a finite measure µ.
If we replace this with Lebesgue measure and consider a stationary covariance
function, then directly from Bochner’s theorem eq. (4.5) we obtain

k(x− x′) =
∫

RD

e2πis·(x−x′) dµ(s) =
∫

RD

e2πis·x
(
e2πis·x′

)∗
dµ(s). (4.38)

The complex exponentials e2πis·x are the eigenfunctions of a stationary kernel
w.r.t. Lebesgue measure. Note the similarity to eq. (4.37) except that the
summation has been replaced by an integral.

The rate of decay of the eigenvalues gives important information about the
smoothness of the kernel. For example Ritter et al. [1995] showed that in 1-d
with µ uniform on [0, 1], processes which are r-times mean-square differentiable
have λi ∝ i−(2r+2) asymptotically. This makes sense as “rougher” processes
have more power at high frequencies, and so their eigenvalue spectrum decays
more slowly. The same phenomenon can be read off from the power spectrum
of the Matérn class as given in eq. (4.15).

Hawkins [1989] gives the exact eigenvalue spectrum for the OU process on
[0, 1]. Widom [1963; 1964] gives an asymptotic analysis of the eigenvalues of
stationary kernels taking into account the effect of the density dµ(x) = p(x)dx;
Bach and Jordan [2002, Table 3] use these results to show the effect of varying
p(x) for the SE kernel. An exact eigenanalysis of the SE kernel under the
Gaussian density is given in the next section.

4.3.1 An Analytic Example ∗

For the case that p(x) is a Gaussian and for the squared-exponential kernel
k(x, x′) = exp(−(x−x′)2/2`2), there are analytic results for the eigenvalues and
eigenfunctions, as given by Zhu et al. [1998, sec. 4]. Putting p(x) = N (x|0, σ2)
we find that the eigenvalues λk and eigenfunctions φk (for convenience let k =
0, 1, . . . ) are given by

λk =

√
2a
A
Bk, (4.39)

φk(x) = exp
(
− (c− a)x2

)
Hk

(√
2cx
)
, (4.40)
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Figure 4.7: The first 3 eigenfunctions of the squared exponential kernel w.r.t. a
Gaussian density. The value of k = 0, 1, 2 is equal to the number of zero-crossings
of the function. The dashed line is proportional to the density p(x).

whereHk(x) = (−1)k exp(x2) dk

dxk exp(−x2) is the kth order Hermite polynomial
(see Gradshteyn and Ryzhik [1980, sec. 8.95]), a−1 = 4σ2, b−1 = 2`2 and

c =
√
a2 + 2ab, A = a+ b+ c, B = b/A. (4.41)

Hints on the proof of this result are given in exercise 4.5.9. A plot of the first
three eigenfunctions for a = 1 and b = 3 is shown in Figure 4.7.

The result for the eigenvalues and eigenfunctions is readily generalized to
the multivariate case when the kernel and Gaussian density are products of
the univariate expressions, as the eigenfunctions and eigenvalues will simply
be products too. For the case that a and b are equal on all D dimensions,
the degeneracy of the eigenvalue ( 2a

A )D/2Bk is
(
k+D−1

D−1

)
which is O(kD−1). As∑k

j=0

(
j+D−1

D−1

)
=
(
k+D

D

)
we see that the

(
k+D

D

)
’th eigenvalue has a value given by

( 2a
A )D/2Bk, and this can be used to determine the rate of decay of the spectrum.

4.3.2 Numerical Approximation of Eigenfunctions

The standard numerical method for approximating the eigenfunctions and eigen-
values of eq. (4.36) is to use a numerical routine to approximate the integral
(see, e.g. Baker [1977, ch. 3]). For example letting dµ(x) = p(x)dx in eq. (4.36)
one could use the approximation

λiφi(x′) =
∫
k(x,x′)p(x)φi(x) dx ' 1

n

n∑
l=1

k(xl,x′)φi(xl), (4.42)
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where the xl’s are sampled from p(x). Plugging in x′ = xl for l = 1, . . . , n into
eq. (4.42) we obtain the matrix eigenproblem

Kui = λmat
i ui, (4.43)

where K is the n×n Gram matrix with entries Kij = k(xi,xj), λmat
i is the ith

matrix eigenvalue and ui is the corresponding eigenvector (normalized so that
u>i ui = 1). We have φi(xj) ∼

√
n(ui)j where the

√
n factor arises from the

differing normalizations of the eigenvector and eigenfunction. Thus 1
nλ

mat
i is

an obvious estimator for λi for i = 1, . . . , n. For fixed n one would expect that
the larger eigenvalues would be better estimated than the smaller ones. The
theory of the numerical solution of eigenvalue problems shows that for a fixed i,
1
nλ

mat
i will converge to λi in the limit that n→∞ [Baker, 1977, Theorem 3.4].

It is also possible to study the convergence further; for example it is quite
easy using the properties of principal components analysis (PCA) in feature
space to show that for any l, 1 ≤ l ≤ n, En[ 1

n

∑l
i=1λ

mat
i ] ≥

∑l
i=1λi and

En[ 1
n

∑n
i=l+1λ

mat
i ] ≤

∑N
i=l+1λi, where En denotes expectation with respect to

samples of size n drawn from p(x). For further details see Shawe-Taylor and
Williams [2003].

The Nyström method for approximating the ith eigenfunction (see Baker Nyström method

[1977] and Press et al. [1992, section 18.1]) is given by

φi(x′) '
√
n

λmat
i

k(x′)>ui, (4.44)

where k(x′)> = (k(x1,x′), . . . , k(xn,x′)), which is obtained from eq. (4.42) by
dividing both sides by λi. Equation 4.44 extends the approximation φi(xj) '√
n(ui)j from the sample points x1, . . . ,xn to all x.

There is an interesting relationship between the kernel PCA method of
Schölkopf et al. [1998] and the eigenfunction expansion discussed above. The kernel PCA

eigenfunction expansion has (at least potentially) an infinite number of non-
zero eigenvalues. In contrast, the kernel PCA algorithm operates on the n× n
matrix K and yields n eigenvalues and eigenvectors. Eq. (4.42) clarifies the
relationship between the two. However, note that eq. (4.44) is identical (up to
scaling factors) to Schölkopf et al. [1998, eq. 4.1] which describes the projection
of a new point x′ onto the ith eigenvector in the kernel PCA feature space.

4.4 Kernels for Non-vectorial Inputs

So far in this chapter we have assumed that the input x is a vector, measuring
the values of a number of attributes (or features). However, for some learning
problems the inputs are not vectors, but structured objects such as strings,
trees or general graphs. For example, we may have a biological problem where
we want to classify proteins (represented as strings of amino acid symbols).11

11Proteins are initially made up of 20 different amino acids, of which a few may later be
modified bringing the total number up to 26 or 30.
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Or our input may be parse-trees derived from a linguistic analysis. Or we may
wish to represent chemical compounds as labelled graphs, with vertices denoting
atoms and edges denoting bonds.

To follow the discriminative approach we need to extract some features from
the input objects and build a predictor using these features. (For a classification
problem, the alternative generative approach would construct class-conditional
models over the objects themselves.) Below we describe two approaches to
this feature extraction problem and the efficient computation of kernels from
them: in section 4.4.1 we cover string kernels, and in section 4.4.2 we describe
Fisher kernels. There exist other proposals for constructing kernels for strings,
for example Watkins [2000] describes the use of pair hidden Markov models
(HMMs that generate output symbols for two strings conditional on the hidden
state) for this purpose.

4.4.1 String Kernels

We start by defining some notation for strings. Let A be a finite alphabet of
characters. The concatenation of strings x and y is written xy and |x| denotes
the length of string x. The string s is a substring of x if we can write x = usv
for some (possibly empty) u, s and v.

Let φs(x) denote the number of times that substring s appears in string x.
Then we define the kernel between two strings x and x′ as

k(x, x′) =
∑

s∈A∗
wsφs(x)φs(x′), (4.45)

where ws is a non-negative weight for substring s. For example, we could set
ws = λ|s|, where 0 < λ < 1, so that shorter substrings get more weight than
longer ones.

A number of interesting special cases are contained in the definition 4.45:

• Setting ws = 0 for |s| > 1 gives the bag-of-characters kernel. This takesbag-of-characters

the feature vector for a string x to be the number of times that each
character in A appears in x.

• In text analysis we may wish to consider the frequencies of word occur-bag-of-words

rence. If we require s to be bordered by whitespace then a “bag-of-words”
representation is obtained. Although this is a very simple model of text
(which ignores word order) it can be surprisingly effective for document
classification and retrieval tasks, see e.g. Hand et al. [2001, sec. 14.3].
The weights can be set differently for different words, e.g. using the “term
frequency inverse document frequency” (TF-IDF) weighting scheme de-
veloped in the information retrieval area [Salton and Buckley, 1988].

• If we only consider substrings of length k, then we obtain the k-spectrum
kernel [Leslie et al., 2003].k-spectrum kernel
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Importantly, there are efficient methods using suffix trees that can compute
a string kernel k(x, x′) in time linear in |x|+ |x′| (with some restrictions on the
weights {ws}) [Leslie et al., 2003, Vishwanathan and Smola, 2003].

Work on string kernels was started by Watkins [1999] and Haussler [1999].
There are many further developments of the methods we have described above;
for example Lodhi et al. [2001] go beyond substrings to consider subsequences
of x which are not necessarily contiguous, and Leslie et al. [2003] describe
mismatch string kernels which allow substrings s and s′ of x and x′ respectively
to match if there are at most m mismatches between them. We expect further
developments in this area, tailoring (or engineering) the string kernels to have
properties that make sense in a particular domain.

The idea of string kernels, where we consider matches of substrings, can
easily be extended to trees, e.g. by looking at matches of subtrees [Collins and
Duffy, 2002].

Leslie et al. [2003] have applied string kernels to the classification of protein
domains into SCOP12 superfamilies. The results obtained were significantly
better than methods based on either PSI-BLAST13 searches or a generative
hidden Markov model classifier. Similar results were obtained by Jaakkola et al.
[2000] using a Fisher kernel (described in the next section). Saunders et al.
[2003] have also described the use of string kernels on the problem of classifying
natural language newswire stories from the Reuters-2157814 database into ten
classes.

4.4.2 Fisher Kernels

As explained above, our problem is that the input x is a structured object of
arbitrary size e.g. a string, and we wish to extract features from it. The Fisher
kernel (introduced by Jaakkola et al., 2000) does this by taking a generative
model p(x|θ), where θ is a vector of parameters, and computing the feature
vector φθ(x) = ∇θ log p(x|θ). φθ(x) is sometimes called the score vector . score vector

Take, for example, a Markov model for strings. Let xk be the kth symbol
in string x. Then a Markov model gives p(x|θ) = p(x1|π)

∏|x|−1
i=1 p(xi+1|xi, A),

where θ = (π, A). Here (π)j gives the probability that x1 will be the jth symbol
in the alphabet A, and A is a |A| × |A| stochastic matrix, with ajk giving the
probability that p(xi+1 = k|xi = j). Given such a model it is straightforward
to compute the score vector for a given x.

It is also possible to consider other generative models p(x|θ). For example
we might try a kth-order Markov model where xi is predicted by the preceding
k symbols. See Leslie et al. [2003] and Saunders et al. [2003] for an interesting
discussion of the similarities of the features used in the k-spectrum kernel and
the score vector derived from an order k − 1 Markov model; see also exercise

12Structural classification of proteins database, http://scop.mrc-lmb.cam.ac.uk/scop/.
13Position-Specific Iterative Basic Local Alignment Search Tool, see

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/psi1.html.
14http://www.daviddlewis.com/resources/testcollections/reuters21578/.
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4.5.12. Another interesting choice is to use a hidden Markov model (HMM) as
the generative model, as discussed by Jaakkola et al. [2000]. See also exercise
4.5.11 for a linear kernel derived from an isotropic Gaussian model for x ∈ RD.

We define a kernel k(x, x′) based on the score vectors for x and x′. One
simple choice is to set

k(x, x′) = φ>θ (x)M−1φθ(x′), (4.46)

where M is a strictly positive definite matrix. Alternatively we might use the
squared exponential kernel k(x, x′) = exp(−α|φθ(x)−φθ(x′)|2) for some α > 0.

The structure of p(x|θ) as θ varies has been studied extensively in informa-
tion geometry (see, e.g. Amari, 1985). It can be shown that the manifold of
log p(x|θ) is Riemannian with a metric tensor which is the inverse of the Fisher
information matrix F , whereFisher information

matrix
F = Ex[φθ(x)φ>θ (x)]. (4.47)

Setting M = F in eq. (4.46) gives the Fisher kernel . If F is difficult to computeFisher kernel

then one might resort to setting M = I. The advantage of using the Fisher
information matrix is that it makes arc length on the manifold invariant to
reparameterizations of θ.

The Fisher kernel uses a class-independent model p(x|θ). Tsuda et al.
[2002] have developed the tangent of posterior odds (TOP) kernel based onTOP kernel

∇θ(log p(y = +1|x,θ)−log p(y = −1|x,θ)), which makes use of class-conditional
distributions for the C+ and C− classes.

4.5 Exercises

1. The OU process with covariance function k(x − x′) = exp(−|x − x′|/`)
is the unique stationary first-order Markovian Gaussian process (see Ap-
pendix B for further details). Consider training inputs x1 < x2 . . . <
xn−1 < xn on R with corresponding function values f = (f(x1), . . . , f(xn))>.
Let xl denote the nearest training input to the left of a test point x∗, and
similarly let xu denote the nearest training input to the right of x∗. Then
the Markovian property means that p(f(x∗)|f) = p(f(x∗)|f(xl), f(xu)).
Demonstrate this by choosing some x-points on the line and computing
the predictive distribution p(f(x∗)|f) using eq. (2.19), and observing that
non-zero contributions only arise from xl and xu. Note that this only
occurs in the noise-free case; if one allows the training points to be cor-
rupted by noise (equations 2.23 and 2.24) then all points will contribute
in general.

2. Computer exercise: write code to draw samples from the neural network
covariance function, eq. (4.29) in 1-d and 2-d. Consider the cases when
var(u0) is either 0 or non-zero. Explain the form of the plots obtained
when var(u0) = 0.
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3. Consider the random process f(x) = erf(u0 +
∑D

i=1ujxj), where u ∼
N (0,Σ). Show that this non-linear transform of a process with an inho-
mogeneous linear covariance function has the same covariance function as
the erf neural network. However, note that this process is not a Gaussian
process. Draw samples from the given process and compare them to your
results from exercise 4.5.2.

4. Derive Gibbs’ non-stationary covariance function, eq. (4.32).

5. Computer exercise: write code to draw samples from Gibbs’ non-stationary
covariance function eq. (4.32) in 1-d and 2-d. Investigate various forms of
length-scale function `(x).

6. Show that the SE process is infinitely MS differentiable and that the OU
process is not MS differentiable.

7. Prove that the eigenfunctions of a symmetric kernel are orthogonal w.r.t. the
measure µ.

8. Let k̃(x,x′) = p1/2(x)k(x,x′)p1/2(x′), and assume p(x) > 0 for all x.
Show that the eigenproblem

∫
k̃(x,x′)φ̃i(x)dx = λ̃iφ̃i(x′) has the same

eigenvalues as
∫
k(x,x′)p(x)φi(x)dx = λiφi(x′), and that the eigenfunc-

tions are related by φ̃i(x) = p1/2(x)φi(x). Also give the matrix version
of this problem (Hint: introduce a diagonal matrix P to take the rôle of
p(x)). The significance of this connection is that it can be easier to find
eigenvalues of symmetric matrices than general matrices.

9. Apply the construction in the previous exercise to the eigenproblem for
the SE kernel and Gaussian density given in section 4.3.1, with p(x) =√

2a/π exp(−2ax2). Thus consider the modified kernel given by k̃(x, x′) =
exp(−ax2) exp(−b(x−x′)2) exp(−a(x′)2). Using equation 7.374.8 in Grad-
shteyn and Ryzhik [1980]:∫ ∞

−∞
exp

(
− (x− y)2

)
Hn(αx) dx =

√
π(1− α2)n/2Hn

( αy

(1− α2)1/2

)
,

verify that φ̃k(x) = exp(−cx2)Hk(
√

2cx), and thus confirm equations 4.39
and 4.40.

10. Computer exercise: The analytic form of the eigenvalues and eigenfunc-
tions for the SE kernel and Gaussian density are given in section 4.3.1.
Compare these exact results to those obtained by the Nyström approxi-
mation for various values of n and choice of samples.

11. Let x ∼ N (µ, σ2I). Consider the Fisher kernel derived from this model
with respect to variation of µ (i.e. regard σ2 as a constant). Show that:

∂ log p(x|µ)
∂µ

∣∣∣∣
µ=0

=
x
σ2

and that F = σ−2I. Thus the Fisher kernel for this model with µ = 0 is
the linear kernel k(x,x′) = 1

σ2 x · x′.
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12. Consider a k− 1 order Markov model for strings on a finite alphabet. Let
this model have parameters θt|s1,...,sk−1 denoting the probability p(xi =
t|xi−1 = s1, . . . , xk−1 = sk−1). Of course as these are probabilities they
obey the constraint that

∑
t′ θt′|s1,...,sk−1 = 1. Enforcing this constraint

can be achieved automatically by setting

θt|s1,...,sk−1 =
θt,s1,...,sk−1∑
t′ θt′,s1,...,sk−1

,

where the θt,s1,...,sk−1 parameters are now independent, as suggested in
[Jaakkola et al., 2000]. The current parameter values are denoted θ0.
Let the current values of θ0t,s1,...,sk−1

be set so that
∑

t′θ
0
t′,s1,...,sk−1

= 1,
i.e. that θ0t,s1,...,sk−1

= θ0t|s1,...,sk−1
.

Show that log p(x|θ) =
∑
nt,s1,...,sk−1 log θt|s1,...,sk−1 where nt,s1,...,sk−1 is

the number of instances of the substring sk−1 . . . s1t in x. Thus, following
Leslie et al. [2003], show that

∂ log p(x|θ)
∂θt,s1,...,sk−1

∣∣∣∣
θ=θ0

=
nt,s1,...,sk−1

θ0t|s1,...,sk−1

− ns1,...,sk−1 ,

where ns1,...,sk−1 is the number of instances of the substring sk−1 . . . s1 in
x. As ns1,...,sk−1θ

0
t|s1,...,sk−1

is the expected number of occurrences of the
string sk−1 . . . s1t given the count ns1,...,sk−1 , the Fisher score captures the
degree to which this string is over- or under-represented relative to the
model. For the k-spectrum kernel the relevant feature is φsk−1...,s1,t(x) =
nt,s1,...,sk−1 .
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