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Chapter 7

Theoretical Perspectives

This chapter covers a number of more theoretical issues relating to Gaussian
processes. In section 2.6 we saw how GPR carries out a linear smoothing of the
datapoints using the weight function. The form of the weight function can be
understood in terms of the equivalent kernel, which is discussed in section 7.1.

As one gets more and more data, one would hope that the GP predictions
would converge to the true underlying predictive distribution. This question
of consistency is reviewed in section 7.2, where we also discuss the concepts of
equivalence and orthogonality of GPs.

When the generating process for the data is assumed to be a GP it is particu-
larly easy to obtain results for learning curves which describe how the accuracy
of the predictor increases as a function of n, as described in section 7.3. An
alternative approach to the analysis of generalization error is provided by the
PAC-Bayesian analysis discussed in section 7.4. Here we seek to relate (with
high probability) the error observed on the training set to the generalization
error of the GP predictor.

Gaussian processes are just one of the many methods that have been devel-
oped for supervised learning problems. In section 7.5 we compare and contrast
GP predictors with other supervised learning methods.

7.1 The Equivalent Kernel

In this section we consider regression problems. We have seen in section 6.2
that the posterior mean for GP regression can be obtained as the function which
minimizes the functional

J [f ] =
1
2
‖f‖2H +

1
2σ2

n

n∑
i=1

(
yi − f(xi)

)2
, (7.1)

where ‖f‖H is the RKHS norm corresponding to kernel k. Our goal is now to
understand the behaviour of this solution as n→∞.



C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

152 Theoretical Perspectives

Let µ(x, y) be the probability measure from which the data pairs (xi, yi) are
generated. Observe that

E
[ n∑

i=1

(
yi − f(xi)

)2] = n

∫ (
y − f(x)

)2
dµ(x, y). (7.2)

Let η(x) = E[y|x] be the regression function corresponding to the probability
measure µ. The variance around η(x) is denoted σ2(x) =

∫
(y− η(x))2dµ(y|x).

Then writing y − f = (y − η) + (η − f) we obtain∫ (
y − f(x)

)2
dµ(x, y) =

∫ (
η(x)− f(x)

)2
dµ(x) +

∫
σ2(x) dµ(x), (7.3)

as the cross term vanishes due to the definition of η(x).

As the second term on the right hand side of eq. (7.3) is independent of f ,
an idealization of the regression problem consists of minimizing the functional

Jµ[f ] =
n

2σ2
n

∫ (
η(x)− f(x)

)2
dµ(x) +

1
2
‖f‖2H. (7.4)

The form of the minimizing solution is most easily understood in terms of the
eigenfunctions {φi(x)} of the kernel k w.r.t. to µ(x), where

∫
φi(x)φj(x)dµ(x) =

δij , see section 4.3. Assuming that the kernel is nondegenerate so that the φs
form a complete orthonormal basis, we write f(x) =

∑∞
i=1 fiφi(x). Similarly,

η(x) =
∑∞

i=1 ηiφi(x), where ηi =
∫
η(x)φi(x)dµ(x). Thus

Jµ[f ] =
n

2σ2
n

∞∑
i=1

(ηi − fi)2 +
1
2

∞∑
i=1

f2
i

λi
. (7.5)

This is readily minimized by differentiation w.r.t. each fi to obtain

fi =
λi

λi + σ2
n/n

ηi. (7.6)

Notice that the term σ2
n/n → 0 as n → ∞ so that in this limit we would

expect that f(x) will converge to η(x). There are two caveats: (1) we have
assumed that η(x) is sufficiently well-behaved so that it can be represented by
the generalized Fourier series

∑∞
i=1 ηiφi(x), and (2) we assumed that the kernel

is nondegenerate. If the kernel is degenerate (e.g. a polynomial kernel) then f
should converge to the best µ-weighted L2 approximation to η within the span
of the φ’s. In section 7.2.1 we will say more about rates of convergence of f to
η; clearly in general this will depend on the smoothness of η, the kernel k and
the measure µ(x, y).

From a Bayesian perspective what is happening is that the prior on f is
being overwhelmed by the data as n → ∞. Looking at eq. (7.6) we also see
that if σ2

n � nλi then fi is effectively zero. This means that we cannot find
out about the coefficients of eigenfunctions with small eigenvalues until we get
sufficient amounts of data. Ferrari Trecate et al. [1999] demonstrated this by
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showing that regression performance of a certain nondegenerate GP could be
approximated by taking the first m eigenfunctions, where m was chosen so that
λm ' σ2

n/n. Of course as more data is obtained then m has to be increased.

Using the fact that ηi =
∫
η(x′)φi(x′)dµ(x′) and defining σ2

eff , σ2
n/n we

obtain

f(x) =
∞∑

i=1

λiηi

λi + σ2
eff

φi(x) =
∫ [ ∞∑

i=1

λiφi(x)φi(x′)
λi + σ2

eff

]
η(x′) dµ(x′). (7.7)

The term in square brackets in eq. (7.7) is the equivalent kernel for the smooth-
ing problem; we denote it by hn(x,x′). Notice the similarity to the vector-valued equivalent kernel

weight function h(x) defined in section 2.6. The difference is that there the pre-
diction was obtained as a linear combination of a finite number of observations
yi with weights given by hi(x) while here we have a noisy function y(x) instead,
with f̄(x′) =

∫
hn(x,x′)y(x)dµ(x). Notice that in the limit n → ∞ (so that

σ2
eff → 0) the equivalent kernel tends towards the delta function.

The form of the equivalent kernel given in eq. (7.7) is not very useful in
practice as it requires knowledge of the eigenvalues/functions for the combina-
tion of k and µ. However, in the case of stationary kernels we can use Fourier
methods to compute the equivalent kernel. Consider the functional

Jρ[f ] =
ρ

2σ2
n

∫
(y(x)− f(x))2 dx +

1
2
‖f‖2H, (7.8)

where ρ has dimensions of the number of observations per unit of x-space
(length/area/volume etc. as appropriate). Using a derivation similar to eq. (7.6)
we obtain

h̃(s) =
Sf (s)

Sf (s) + σ2
n/ρ

=
1

1 + S−1
f (s)σ2

n/ρ
, (7.9)

where Sf (s) is the power spectrum of the kernel k. The term σ2
n/ρ corresponds

to the power spectrum of a white noise process, as the delta function covari-
ance function of white noise corresponds to a constant in the Fourier domain.
This analysis is known as Wiener filtering; see, e.g. Papoulis [1991, sec. 14-1]. Wiener filtering

Equation (7.9) is the same as eq. (7.6) except that the discrete eigenspectrum
has been replaced by a continuous one.

As can be observed in Figure 2.6, the equivalent kernel essentially gives a
weighting to the observations locally around x. Thus identifying ρ with np(x)
we can obtain an approximation to the equivalent kernel for stationary kernels
when the width of the kernel is smaller than the length-scale of variations in
p(x). This form of analysis was used by Silverman [1984] for splines in one
dimension.

7.1.1 Some Specific Examples of Equivalent Kernels

We first consider the OU process in 1-d. This has k(r) = exp(−α|r|) (setting
α = 1/` relative to our previous notation and r = x− x′), and power spectrum
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S(s) = 2α/(4π2s2 + α2). Let vn , σ2
n/ρ. Using eq. (7.9) we obtain

h̃(s) =
2α

vn(4π2s2 + β2)
, (7.10)

where β2 = α2 + 2α/vn. This again has the form of Fourier transform of an
OU covariance function1 and can be inverted to obtain h(r) = α

vnβ e
−β|r|. In

particular notice that as n increases (and thus vn decreases) the inverse length-
scale β of h(r) increases; asymptotically β ∼ n1/2 for large n. This shows that
the width of equivalent kernel for the OU covariance function will scale as n−1/2

asymptotically. Similarly the width will scale as p(x)−1/2 asymptotically.

A similar analysis can be carried out for the AR(2) Gaussian process in 1-d
(see section B.2) which has a power spectrum ∝ (4π2s2 + α2)−2 (i.e. it is in
the Matérn class with ν = 3/2). In this case we can show (using the Fourier
relationships given by Papoulis [1991, p. 326]) that the width of the equivalent
kernel scales as n−1/4 asymptotically.

Analysis of the equivalent kernel has also been carried out for spline models.
Silverman [1984] gives the explicit form of the equivalent kernel in the case
of a one-dimensional cubic spline (corresponding to the regularizer ‖Pf‖2 =∫

(f
′′
)2dx). Thomas-Agnan [1996] gives a general expression for the equivalent

kernel for the spline regularizer ‖Pf‖2 =
∫

(f (m))2dx in one dimension and also
analyzes end-effects if the domain of interest is a bounded open interval. For
the regularizer ‖Pf‖2 =

∫
(∇2f)2dx in two dimensions, the equivalent kernel is

given in terms of the Kelvin function kei (Poggio et al. 1985, Stein 1991).

Silverman [1984] has also shown that for splines of order m in 1-d (corre-
sponding to a roughness penalty of

∫
(f (m))2 dx) the width of the equivalent

kernel will scale as n−1/2m asymptotically. In fact it can be shown that this is
true for splines in D > 1 dimensions too, see exercise 7.7.1.

Another interesting case to consider is the squared exponential kernel, where
S(s) = (2π`2)D/2 exp(−2π2`2|s|2). Thus

h̃SE(s) =
1

1 + b exp(2π2`2|s|2)
, (7.11)

where b = σ2
n/ρ(2π`

2)D/2. We are unaware of an exact result in this case, but
the following approximation due to Sollich and Williams [2005] is simple but
effective. For large ρ (i.e. large n) b will be small. Thus for small s = |s| we
have that h̃SE ' 1, but for large s it is approximately 0. The change takes
place around the point sc where b exp(2π2`2s2c) = 1, i.e. s2c = log(1/b)/2π2`2.
As exp(2π2`2s2) grows quickly with s, the transition of h̃SE between 1 and 0
can be expected to be rapid, and thus be well-approximated by a step function.
By using the standard result for the Fourier transform of the step function we
obtain

hSE(x) = 2scsinc(2πscx) (7.12)

1The fact that h̃(s) has the same form as Sf (s) is particular to the OU covariance function
and is not generally the case.
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for D = 1, where sinc(z) = sin(z)/z. A similar calculation in D > 1 using
eq. (4.7) gives

hSE(r) =
(sc

r

)D/2

JD/2(2πscr). (7.13)

Notice that sc scales as (log(n))1/2 so that the width of the equivalent kernel
will decay very slowly as n increases. Notice that the plots in Figure 2.6 show
the sinc-type shape, although the sidelobes are not quite as large as would be
predicted by the sinc curve (because the transition is smoother than a step
function in Fourier space so there is less “ringing”).

7.2 Asymptotic Analysis ∗

In this section we consider two asymptotic properties of Gaussian processes,
consistency and equivalence/orthogonality.

7.2.1 Consistency

In section 7.1 we have analyzed the asymptotics of GP regression and have
seen how the minimizer of the functional eq. (7.4) converges to the regression
function as n → ∞. We now broaden the focus by considering loss functions
other than squared loss, and the case where we work directly with eq. (7.1)
rather than the smoothed version eq. (7.4).

The set up is as follows: Let L(·, ·) be a pointwise loss function. Consider
a procedure that takes training data D and this loss function, and returns a
function fD(x). For a measurable function f , the risk (expected loss) is defined
as

RL(f) =
∫
L(y, f(x)) dµ(x, y). (7.14)

Let f∗L denote the function that minimizes this risk. For squared loss f∗L(x) =
E[y|x]. For 0/1 loss with classification problems, we choose f∗L(x) to be the
class c at x such that p(Cc|x) > p(Cj |x) for all j 6= c (breaking ties arbitrarily).

Definition 7.1 We will say that a procedure that returns fD is consistent for consistency

a given measure µ(x, y) and loss function L if

RL(fD) → RL(f∗L) as n→∞, (7.15)

where convergence is assessed in a suitable manner, e.g. in probability. If fD(x)
is consistent for all Borel probability measures µ(x, y) then it is said to be uni-
versally consistent. �

A simple example of a consistent procedure is the kernel regression method.
As described in section 2.6 one obtains a prediction at test point x∗ by comput-
ing f̂(x∗) =

∑n
i=1 wiyi where wi = κi/

∑n
j=1κj (the Nadaraya-Watson estima-

tor). Let h be the width of the kernel κ and D be the dimension of the input
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space. It can be shown that under suitable regularity conditions if h → 0 and
nhD → ∞ as n → ∞ then the procedure is consistent; see e.g. [Györfi et al.,
2002, Theorem 5.1] for the regression case with squared loss and Devroye et al.
[1996, Theorem 10.1] for the classification case using 0/1 loss. An intuitive
understanding of this result can be obtained by noting that h→ 0 means that
only datapoints very close to x∗ will contribute to the prediction (eliminating
bias), while the condition nhD →∞ means that a large number of datapoints
will contribute to the prediction (eliminating noise/variance).

It will first be useful to consider why we might hope that GPR and GPC
should be universally consistent. As discussed in section 7.1, the key property
is that a non-degenerate kernel will have an infinite number of eigenfunctions
forming an orthonormal set. Thus from generalized Fourier analysis a linear
combination of eigenfunctions

∑∞
i=1 ciφi(x) should be able to represent a suf-

ficiently well-behaved target function f∗L. However, we have to estimate the
infinite number of coefficients {ci} from the noisy observations. This makes it
clear that we are playing a game involving infinities which needs to be played
with care, and there are some results [Diaconis and Freedman, 1986, Freedman,
1999, Grünwald and Langford, 2004] which show that in certain circumstances
Bayesian inference in infinite-dimensional objects can be inconsistent.

However, there are some positive recent results on the consistency of GPR
and GPC. Choudhuri et al. [2005] show that for the binary classification case
under certain assumptions GPC is consistent. The assumptions include smooth-
ness on the mean and covariance function of the GP, smoothness on E[y|x] and
an assumption that the domain is a bounded subset of RD. Their result holds
for the class of response functions which are c.d.f.s of a unimodal symmetric
density; this includes the probit and logistic functions.

For GPR, Choi and Schervish [2004] show that for a one-dimensional input
space of finite length under certain assumptions consistency holds. Here the
assumptions again include smoothness of the mean and covariance function of
the GP and smoothness of E[y|x]. An additional assumption is that the noise
has a normal or Laplacian distribution (with an unknown variance which is
inferred).

There are also some consistency results relating to the functional

Jλn
[f ] =

λn

2
‖f‖2H +

1
n

n∑
i=1

L
(
yi, f(xi)

)
, (7.16)

where λn → 0 as n → ∞. Note that to agree with our previous formulations
we would set λn = 1/n, but other decay rates on λn are often considered.

In the splines literature, Cox [1984] showed that for regression problems us-
ing the regularizer ‖f‖2m =

∑m
k=0 ‖Okf‖2 (using the definitions in eq. (6.10))

consistency can be obtained under certain technical conditions. Cox and O’Sulli-
van [1990] considered a wide range of problems (including regression problems
with squared loss and classification using logistic loss) where the solution is
obtained by minimizing the regularized risk using a spline smoothness term.
They showed that if f∗L ∈ H (where H is the RKHS corresponding to the spline
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regularizer) then as n → ∞ and λn → 0 at an appropriate rate, one gets
convergence of fD to f∗L.

More recently, Zhang [2004, Theorem 4.4] has shown that for the classifica-
tion problem with a number of different loss functions (including logistic loss,
hinge loss and quadratic loss) and for general RKHSs with a nondegenerate
kernel, that if λn → 0, λnn → ∞ and µ(x, y) is sufficiently regular then the
classification error of fD will converge to the Bayes optimal error in probability
as n → ∞. Similar results have also been obtained by Steinwart [2005] with
various rates on the decay of λn depending on the smoothness of the kernel.
Bartlett et al. [2003] have characterized the loss functions that lead to universal
consistency.

Above we have focussed on regression and classification problems. However,
similar analyses can also be given for other problems such as density estimation
and deconvolution; see Wahba [1990, chs. 8, 9] for references. Also we have
discussed consistency using a fixed decay rate for λn. However, it is also possible
to analyze the asymptotics of methods where λn is set in a data-dependent way,
e.g. by cross-validation;2 see Wahba [1990, sec. 4.5] and references therein for
further details.

Consistency is evidently a desirable property of supervised learning proce-
dures. However, it is an asymptotic property that does not say very much about
how a given prediction procedure will perform on a particular problem with a
given dataset. For instance, note that we only required rather general prop-
erties of the kernel function (e.g. non-degeneracy) for some of the consistency
results. However, the choice of the kernel can make a huge difference to how a
procedure performs in practice. Some analyses related to this issue are given in
section 7.3.

7.2.2 Equivalence and Orthogonality

The presentation in this section is based mainly on Stein [1999, ch. 4]. For
two probability measures µ0 and µ1 defined on a measurable space (Ω,F),3

µ0 is said to be absolutely continuous w.r.t. µ1 if for all A ∈ F , µ1(A) = 0
implies µ0(A) = 0. If µ0 is absolutely continuous w.r.t. µ1 and µ1 is absolutely
continuous w.r.t. µ0 the two measures are said to be equivalent, written µ0 ≡ µ1.
µ0 and µ1 are said to be orthogonal, written µ0 ⊥ µ1, if there exists an A ∈ F
such that µ0(A) = 1 and µ1(A) = 0. (Note that in this case we have µ0(Ac) = 0
and µ1(Ac) = 1, where Ac is the complement of A.) The dichotomy theorem for
Gaussian processes (due to Hajek [1958] and, independently, Feldman [1958])
states that two Gaussian processes are either equivalent or orthogonal.

Equivalence and orthogonality for Gaussian measures µ0, µ1 with corre-
sponding probability densities p0, p1, can be characterized in terms of the

2Cross validation is discussed in section 5.3.
3See section A.7 for background on measurable spaces.
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symmetrized Kullback-Leibler divergence KLsym between them, given by

KLsym(p0, p1) =
∫

(p0(f)− p1(f)) log
p0(f)
p1(f)

df . (7.17)

The measures are equivalent if KLsym <∞ and orthogonal otherwise. For two
finite-dimensional Gaussian distributions N (µ0,K0) and N (µ1,K1) we have
[Kullback, 1959, sec. 9.1]

KLsym = 1
2 tr(K0 −K1)(K−1

1 −K−1
0 )

+ 1
2 tr(K−1

1 +K−1
0 )(µ0 − µ1)(µ0 − µ1)

>.
(7.18)

This expression can be simplified considerably by simultaneously diagonalizing
K0 and K1. Two finite-dimensional Gaussian distributions are equivalent if the
null spaces of their covariance matrices coincide, and are orthogonal otherwise.

Things can get more interesting if we consider infinite-dimensional distribu-
tions, i.e. Gaussian processes. Consider some closed subset R ∈ RD. Choose
some finite number n of x-points in R and let f = (f1, . . . , fn)> denote the
values corresponding to these inputs. We consider the KLsym-divergence as
above, but in the limit n→∞. KLsym can now diverge if the rates of decay of
the eigenvalues of the two processes are not the same. For example, consider
zero-mean periodic processes with period 1 where the eigenvalue λi

j indicates
the amount of power in the sin/cos terms of frequency 2πj for process i = 0, 1.
Then using eq. (7.18) we have

KLsym =
(λ0

0 − λ1
0)

2

λ0
0λ

1
0

+ 2
∞∑

j=1

(λ0
j − λ1

j )
2

λ0
jλ

1
j

(7.19)

(see also [Stein, 1999, p. 119]). Some corresponding results for the equiva-
lence or orthogonality of non-periodic Gaussian processes are given in Stein
[1999, pp. 119-122]. Stein (p. 109) gives an example of two equivalent Gaussian
processes on R, those with covariance functions exp(−r) and 1/2 exp(−2r). (It
is easy to check that for large s these have the same power spectrum.)

We now turn to the consequences of equivalence for the model selection
problem. Suppose that we know that either GP0 or GP1 is the correct model.
Then if GP0 ≡ GP1 then it is not possible to determine which model is correct
with probability 1. However, under a Bayesian setting all this means is if we
have prior probabilities π0 and π1 = 1−π0 on these two hypotheses, then after
observing some data D the posterior probabilities p(GPi|D) (for i = 0, 1) will
not be 0 or 1, but could be heavily skewed to one model or the other.

The other important observation is to consider the predictions made by GP0

or GP1. Consider the case where GP0 is the correct model and GP1 ≡ GP0.
Then Stein [1999, sec. 4.3] shows that the predictions of GP1 are asymptotically
optimal, in the sense that the expected relative prediction error between GP1

and GP0 tends to 0 as n→∞ under some technical conditions. Stein’s Corol-
lary 9 (p. 132) shows that this conclusion remains true under additive noise if
the un-noisy GPs are equivalent. One caveat about equivalence is although the
predictions of GP1 are asymptotically optimal when GP0 is the correct model
and GP0 ≡ GP1, one would see differing predictions for finite n.
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7.3 Average-case Learning Curves ∗

In section 7.2 we have discussed the asymptotic properties of Gaussian process
predictors and related methods. In this section we will say more about the
speed of convergence under certain specific assumptions. Our goal will be to
obtain a learning curve describing the generalization error as a function of the
training set size n. This is an average-case analysis, averaging over the choice
of target functions (drawn from a GP) and over the x locations of the training
points.

In more detail, we first consider a target function f drawn from a Gaussian
process. n locations are chosen to make observations at, giving rise to the train-
ing set D = (X,y). The yis are (possibly) noisy observations of the underlying
function f . Given a loss function L(·, ·) which measures the difference between
the prediction for f and f itself, we obtain an estimator fD for f . Below we
will use the squared loss, so that the posterior mean f̄D(x) is the estimator.
Then the generalization error (given f and D) is given by generalization error

Eg
D(f) =

∫
L(f(x∗), f̄D(x∗))p(x∗) dx∗. (7.20)

As this is an expected loss it is technically a risk, but the term generalization
error is commonly used.

Eg
D(f) depends on both the choice of f and on X. (Note that y depends on

the choice of f , and also on the noise, if present.) The first level of averaging
we consider is over functions f drawn from a GP prior, to obtain

Eg(X) =
∫
Eg
D(f)p(f) df. (7.21)

It will turn out that for regression problems with Gaussian process priors and
predictors this average can be readily calculated. The second level of averaging
assumes that the x-locations of the training set are drawn i.i.d. from p(x) to
give

Eg(n) =
∫
Eg(X)p(x1) . . . p(xn) dx1 . . . dxn. (7.22)

A plot of Eg(n) against n is known as a learning curve. learning curve

Rather than averaging over X, an alternative is to minimize Eg(X) w.r.t. X.
This gives rise to the optimal experimental design problem. We will not say
more about this problem here, but it has been subject to a large amount of
investigation. An early paper on this subject is by Ylvisaker [1975]. These
questions have been addressed both in the statistical literature and in theoretical
numerical analysis; for the latter area the book by Ritter [2000] provides a useful
overview.

We now proceed to develop the average-case analysis further for the specific
case of GP predictors and GP priors for the regression case using squared loss.
Let f be drawn from a zero-mean GP with covariance function k0 and noise
level σ2

0 . Similarly the predictor assumes a zero-mean process, but covariance
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function k1 and noise level σ2
1 . At a particular test location x∗, averaging over

f we have

E[(f(x∗)− k1(x∗)>K−1
1,yy)2] (7.23)

= E[f2(x∗)]− 2k1(x∗)>K−1
1,yE[f(x∗)y] + k1(x∗)>K−1

1,yE[yy>]K−1
1,yk1(x∗)

= k0(x∗,x∗)− 2k1(x∗)>K−1
1,yk0(x∗) + k1(x∗)>K−1

1,yK0,yK
−1
1,yk1(x∗)

where Ki,y = Ki,f + σ2
i for i = 0, 1, i.e. the covariance matrix including the

assumed noise. If k1 = k0 so that the predictor is correctly specified then
the above expression reduces to k0(x∗,x∗)−k0(x∗)>K−1

0,yk0(x∗), the predictive
variance of the GP.

Averaging the error over p(x∗) we obtain

Eg(X) =
∫

E[(f(x∗)− k1(x∗)>K−1
1,yy)2]p(x∗) dx∗ (7.24)

=
∫
k0(x∗,x∗)p(x∗) dx∗ − 2 tr

(
K−1

1,y

∫
k0(x∗)k1(x∗)>p(x∗) dx∗

)
+ tr

(
K−1

1,yK0,yK
−1
1,y

∫
k1(x∗)k1(x)>p(x∗) dx∗

)
.

For some choices of p(x∗) and covariance functions these integrals will be an-
alytically tractable, reducing the computation of Eg(X) to a n × n matrix
computation.

To obtain Eg(n) we need to perform a final level of averaging over X. In
general this is difficult even if Eg(X) can be computed exactly, but it is some-
times possible, e.g. for the noise-free OU process on the real line, see section
7.6.

The form of Eg(X) can be simplified considerably if we express the covari-
ance functions in terms of their eigenfunction expansions. In the case that k0 =
k1 we use the definition k(x,x′) =

∑
i λiφi(x)φi(x′) and

∫
k(x,x′)φi(x)p(x) dx =

λiφi(x′). Let Λ be a diagonal matrix of the eigenvalues and Φ be the N × n
design matrix, as defined in section 2.1.2. Then from eq. (7.24) we obtain

Eg(X) = tr(Λ)− tr((σ2
nI + Φ>ΛΦ)−1Φ>Λ2Φ)

= tr(Λ−1 + σ−2
n ΦΦ>)−1,

(7.25)

where the second line follows through the use of the matrix inversion lemma
eq. (A.9) (or directly if we use eq. (2.11)), as shown in Sollich [1999] or Opper
and Vivarelli [1999]. Using the fact that EX [ΦΦ>] = nI, a näıve approximation
would replace ΦΦ> inside the trace with its expectation; in fact Opper and
Vivarelli [1999] showed that this gives a lower bound, so that

Eg(n) ≥ tr(Λ−1 + nσ−2
n I)−1 = σ2

N∑
i=1

λi

σ2
n + nλi

. (7.26)

Examining the asymptotics of eq. (7.26), we see that for each eigenvalue where
λi � σ2

n/n we add σ2
n/n onto the bound on the generalization error. As we saw
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in section 7.1, more eigenfunctions “come into play” as n increases, so the rate
of decay of Eg(n) is slower than 1/n. Sollich [1999] derives a number of more
accurate approximations to the learning curve than eq. (7.26).

For the noiseless case with k1 = k0, there is a simple lower bound Eg(n) ≥∑∞
i=n+1 λi due to Micchelli and Wahba [1981]. This bound is obtained by

demonstrating that the optimal n pieces of information are the projections of the
random function f onto the first n eigenfunctions. As observations which simply
consist of function evaluations will not in general provide such information this
is a lower bound. Plaskota [1996] generalized this result to give a bound on the
learning curve if the observations are noisy.

Some asymptotic results for the learning curves are known. For example, in
Ritter [2000, sec. V.2] covariance functions obeying Sacks-Ylvisaker conditions4

of order r in 1-d are considered. He shows that for an optimal sampling of the
input space the generalization error goes as O(n−(2r+1)/(2r+2)) for the noisy
problem. Similar rates can also be found in Sollich [2002] for random designs.
For the noise-free case Ritter [2000, p. 103] gives the rate as O(n−(2r+1)).

One can examine the learning curve not only asymptotically but also for
small n, where typically the curve has a roughly linear decrease with n. Williams
and Vivarelli [2000] explained this behaviour by observing that the introduction
of a datapoint x1 reduces the variance locally around x1 (assuming a stationary
covariance function). The addition of another datapoint at x2 will also create
a “hole” there, and so on. With only a small number of datapoints it is likely
that these holes will be far apart so their contributions will add, thus explaining
the initial linear trend.

Sollich [2002] has also investigated the mismatched case where k0 6= k1.
This can give rise to a rich variety of behaviours in the learning curves, includ-
ing plateaux. Stein [1999, chs. 3, 4] has also carried out some analysis of the
mismatched case.

Although we have focused on GP regression with squared loss, we note that
Malzahn and Opper [2002] have developed more general techniques that can be
used to analyze learning curves for other situations such as GP classification.

7.4 PAC-Bayesian Analysis ∗

In section 7.3 we gave an average-case analysis of generalization, taking the
average with respect to a GP prior over functions. In this section we present
a different kind of analysis within the probably approximately correct (PAC) PAC

framework due to Valiant [1984]. Seeger [2002; 2003] has presented a PAC-
Bayesian analysis of generalization in Gaussian process classifiers and we get
to this in a number of stages; we first present an introduction to the PAC
framework (section 7.4.1), then describe the PAC-Bayesian approach (section

4Roughly speaking, a stochastic process which possesses r MS derivatives but not r + 1
is said to satisfy Sacks-Ylvisaker conditions of order r; in 1-d this gives rise to a spectrum
λi ∝ i−(2r+2) asymptotically. The OU process obeys Sacks-Ylvisaker conditions of order 0.
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7.4.2) and then finally the application to GP classification (section 7.4.3). Our
presentation is based mainly on Seeger [2003].

7.4.1 The PAC Framework

Consider a fixed measure µ(x, y). Given a loss function L there exists a function
η(x) which minimizes the expected risk. By running a learning algorithm on
a data set D of size n drawn i.i.d. from µ(x, y) we obtain an estimate fD of η
which attains an expected risk RL(fD). We are not able to evaluate RL(fD) as
we do not know µ. However, we do have access to the empirical distribution of
the training set µ̂(x, y) = 1

n

∑
i δ(x−xi)δ(y−yi) and can compute the empirical

risk R̂L(fD) = 1
n

∑
i L(yi, fD(xi)). Because the training set had been used to

compute fD we would expect R̂L(fD) to underestimate RL(fD),5 and the aim
of the PAC analysis is to provide a bound on RL(fD) based on R̂L(fD).

A PAC bound has the following format

pD{RL(fD) ≤ R̂L(fD) + gap(fD,D, δ)} ≥ 1− δ, (7.27)

where pD denotes the probability distribution of datasets drawn i.i.d. from
µ(x, y), and δ ∈ (0, 1) is called the confidence parameter. The bound states
that, averaged over draws of the dataset D from µ(x, y), RL(fD) does not
exceed the sum of R̂L(fD) and the gap term with probability of at least 1− δ.
The δ accounts for the “probably” in PAC, and the “approximately” derives
from the fact that the gap term is positive for all n. It is important to note that
PAC analyses are distribution-free, i.e. eq. (7.27) must hold for any measure µ.

There are two kinds of PAC bounds, depending on whether gap(fD,D, δ)
actually depends on the particular sample D (rather than on simple statistics
like n). Bounds that do depend on D are called data dependent, and those that
do not are called data independent. The PAC-Bayesian bounds given below are
data dependent.

It is important to understand the interpretation of a PAC bound and to
clarify this we first consider a simpler case of statistical inference. We are
given a dataset D = {x1, . . . ,xn} drawn i.i.d. from a distribution µ(x) that
has mean m. An estimate of m is given by the sample mean x̄ =

∑
i xi/n.

Under certain assumptions we can obtain (or put bounds on) the sampling
distribution p(x̄|m) which relates to the choice of dataset D. However, if we
wish to perform probabilistic inference for m we need to combine p(x̄|m) with
a prior distribution p(m) and use Bayes’ theorem to obtain the posterior.6

The situation is similar (although somewhat more complex) for PAC bounds as
these concern the sampling distribution of the expected and empirical risks of
fD w.r.t. D.

5It is also possible to consider PAC analyses of other empirical quantities such as the
cross-validation error (see section 5.3) which do not have this bias.

6In introductory treatments of frequentist statistics the logical hiatus of going from the
sampling distribution to inference on the parameter of interest is often not well explained.
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We might wish to make a conditional statement like

pD{RL(fD) ≤ r + gap(fD,D, δ)|R̂L(fD) = r} ≥ 1− δ, (7.28)

where r is a small value, but such a statement cannot be inferred directly from
the PAC bound. This is because the gap might be heavily anti-correlated with
R̂L(fD) so that the gap is large when the empirical risk is small.

PAC bounds are sometimes used to carry out model selection—given a learn-
ing machine which depends on a (discrete or continuous) parameter vector θ,
one can seek to minimize the generalization bound as a function of θ. However,
this procedure may not be well-justified if the generalization bounds are loose.
Let the slack denote the difference between the value of the bound and the
generalization error. The danger of choosing θ to minimize the bound is that
if the slack depends on θ then the value of θ that minimizes the bound may be
very different from the value of θ that minimizes the generalization error. See
Seeger [2003, sec. 2.2.4] for further discussion.

7.4.2 PAC-Bayesian Analysis

We now consider a Bayesian set up, with a prior distribution p(w) over the pa-
rameters w, and a “posterior” distribution q(w). (Strictly speaking the analysis
does not require q(w) to be the posterior distribution, just some other distribu-
tion, but in practice we will consider q to be an (approximate) posterior distri-
bution.) We also limit our discussion to binary classification with labels {−1, 1},
although more general cases can be considered, see Seeger [2003, sec. 3.2.2].

The predictive distribution for f∗ at a test point x∗ given q(w) is q(f∗|x∗) =∫
q(f∗|w,x∗)q(w)dw, and the predictive classifier outputs sgn(q(f∗|x∗)− 1/2). predictive classifier

The Gibbs classifier has also been studied in learning theory; given a test point Gibbs classifier
x∗ one draws a sample w̃ from q(w) and predicts the label using sgn(f(x∗; w̃)).
The main reason for introducing the Gibbs classifier here is that the PAC-
Bayesian theorems given below apply to Gibbs classifiers.

For a given parameter vector w giving rise to a classifier c(x;w), the ex-
pected risk and empirical risk are given by

RL(w) =
∫
L(y, c(x;w)) dµ(x, y), R̂L(w) =

1
n

n∑
i=1

L(yi, c(xi;w)). (7.29)

As the Gibbs classifier draws samples from q(w) we consider the averaged risks

RL(q) =
∫
RL(w)q(w) dw, R̂L(q) =

∫
R̂L(w)q(w) dw. (7.30)

Theorem 7.1 (McAllester’s PAC-Bayesian theorem) For any probability mea- McAllester’s
PAC-Bayesian theoremsures p and q over w and for any bounded loss function L for which L(y, c(x)) ∈

[0, 1] for any classifier c and input x we have

pD

{
RL(q) ≤ R̂L(q) +

√
KL(q||p) + log 1

δ + log n+ 2
2n− 1

∀ q
}
≥ 1− δ. (7.31)

�



C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

164 Theoretical Perspectives

The proof can be found in McAllester [2003]. The Kullback-Leibler (KL) diver-
gence KL(q||p) is defined in section A.5. An example of a loss function which
obeys the conditions of the theorem is the 0/1 loss.

For the special case of 0/1 loss, Seeger [2002] gives the following tighter
bound.

Theorem 7.2 (Seeger’s PAC-Bayesian theorem) For any distribution over X×Seeger’s PAC-
Bayesian theorem {−1,+1} and for any probability measures p and q over w the following bound

holds for i.i.d. samples drawn from the data distribution

pD

{
KLBer(R̂L(q)||RL(q)) ≤ 1

n
(KL(q||p) + log

n+ 1
δ

) ∀ q
}
≥ 1− δ. (7.32)

�
Here KLBer(·||·) is the KL divergence between two Bernoulli distributions (de-
fined in eq. (A.22)). Thus the theorem bounds (with high probability) the KL
divergence between R̂L(q) and RL(q).

The PAC-Bayesian theorems above refer to a Gibbs classifier. If we are
interested in the predictive classifier sgn(q(f∗|x∗) − 1/2) then Seeger [2002]
shows that if q(f∗|x∗) is symmetric about its mean then the expected risk
of the predictive classifier is less than twice the expected risk of the Gibbs
classifier. However, this result is based on a simple bounding argument and in
practice one would expect that the predictive classifier will usually give better
performance than the Gibbs classifier. Recent work by Meir and Zhang [2003]
provides some PAC bounds directly for Bayesian algorithms (like the predictive
classifier) whose predictions are made on the basis of a data-dependent posterior
distribution.

7.4.3 PAC-Bayesian Analysis of GP Classification

To apply this bound to the Gaussian process case we need to compute the
KL divergence KL(q||p) between the posterior distribution q(w) and the prior
distribution p(w). Although this could be considered w.r.t. the weight vector
w in the eigenfunction expansion, in fact it turns out to be more convenient
to consider the latent function value f(x) at every possible point in the input
space X as the parameter. We divide this (possibly infinite) vector into two
parts, (1) the values corresponding to the training points x1, . . . ,xn, denoted
f , and (2) those at the remaining points in x-space (the test points) f∗.

The key observation is that all methods we have described for dealing with
GP classification problems produce a posterior approximation q(f |y) which is
defined at the training points. (This is an approximation for Laplace’s method
and for EP; MCMC methods sample from the exact posterior.) This posterior
over f is then extended to the test points by setting q(f , f∗|y) = q(f |y)p(f∗|f).
Of course for the prior distribution we have a similar decomposition p(f , f∗) =
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p(f)p(f∗|f). Thus the KL divergence is given by

KL(q||p) =
∫
q(f |y)p(f∗|f) log

q(f |y)p(f∗|f)
p(f)p(f∗|f)

dfdf∗

=
∫
q(f |y) log

q(f |y)
p(f)

df ,
(7.33)

as shown e.g. in Seeger [2002]. Notice that this has reduced a rather scary
infinite-dimensional integration to a more manageable n-dimensional integra-
tion; in the case that q(f |y) is Gaussian (as for the Laplace and EP approxima-
tions), this KL divergence can be computed using eq. (A.23). For the Laplace
approximation with p(f) = N (0,K) and q(f |y) = N (f̂ , A−1) this gives

KL(q||p) = 1
2 log |K|+ 1

2 log |A|+ 1
2 tr

(
A−1(K−1 −A)

)
+ 1

2 f̂
>K−1f̂ . (7.34)

Seeger [2002] has evaluated the quality of the bound produced by the PAC-
Bayesian method for a Laplace GPC on the task of discriminating handwritten
2s and 3s from the MNIST handwritten digits database.7 He reserved a test set
of 1000 examples and used training sets of size 500, 1000, 2000, 5000 and 9000.
The classifications were replicated ten times using draws of the training sets
from a pool of 12089 examples. We quote example results for n = 5000 where
the training error was 0.0187 ± 0.0016, the test error was 0.0195 ± 0.0011 and
the PAC-Bayesian bound on the generalization error (evaluated for δ = 0.01)
was 0.076 ± 0.002. (The ± figures denote a 95% confidence interval.) The
classification results are for the Gibbs classifier; for the predictive classifier the
test error rate was 0.0171±0.0016. Thus the generalization error is around 2%,
while the PAC bound is 7.6%. Many PAC bounds struggle to predict error rates
below 100%(!), so this is an impressive and highly non-trivial result. Further
details and experiments can be found in Seeger [2002].

7.5 Comparison with Other Supervised Learn-
ing Methods

The focus of this book is on Gaussian process methods for supervised learning.
However, there are many other techniques available for supervised learning such
as linear regression, logistic regression, decision trees, neural networks, support
vector machines, kernel smoothers, k-nearest neighbour classifiers, etc., and we
need to consider the relative strengths and weaknesses of these approaches.

Supervised learning is an inductive process—given a finite training set we
wish to infer a function f that makes predictions for all possible input values.
The additional assumptions made by the learning algorithm are known as its
inductive bias (see e.g. Mitchell [1997, p. 43]). Sometimes these assumptions inductive bias

are explicit, but for other algorithms (e.g. for decision tree induction) they can
be rather more implicit.

7See http://yann.lecun.com/exdb/mnist.
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However, for all their variety, supervised learning algorithms are based on
the idea that similar input patterns will usually give rise to similar outputs (or
output distributions), and it is the precise notion of similarity that differentiates
the algorithms. For example some algorithms may do feature selection and
decide that there are input dimensions that are irrelevant to the predictive task.
Some algorithms may construct new features out of those provided and measure
similarity in this derived space. As we have seen, many regression techniques
can be seen as linear smoothers (see section 2.6) and these techniques vary in
the definition of the weight function that is used.

One important distinction between different learning algorithms is how they
relate to the question of universal consistency (see section 7.2.1). For example
a linear regression model will be inconsistent if the function that minimizes the
risk cannot be represented by a linear function of the inputs. In general a model
with a finite-dimensional parameter vector will not be universally consistent.
Examples of such models are linear regression and logistic regression with a
finite-dimensional feature vector, and neural networks with a fixed number of
hidden units. In contrast to these parametric models we have non-parametric
models (such as k-nearest neighbour classifiers, kernel smoothers and Gaussian
processes and SVMs with nondegenerate kernels) which do not compress the
training data into a finite-dimensional parameter vector. An intermediate po-
sition is taken by semi-parametric models such as neural networks where the
number of hidden units k is allowed to increase as n increases. In this case uni-
versal consistency results can be obtained [Devroye et al., 1996, ch. 30] under
certain technical conditions and growth rates on k.

Although universal consistency is a “good thing”, it does not necessarily
mean that we should only consider procedures that have this property; for
example if on a specific problem we knew that a linear regression model was
consistent for that problem then it would be very natural to use it.

In the 1980’s there was a large surge in interest in artificial neural networksneural networks

(ANNs), which are feedforward networks consisting of an input layer, followed
by one or more layers of non-linear transformations of weighted combinations of
the activity from previous layers, and an output layer. One reason for this surge
of interest was the use of the backpropagation algorithm for training ANNs.
Initial excitement centered around that fact that training non-linear networks
was possible, but later the focus came onto the generalization performance of
ANNs, and how to deal with questions such as how many layers of hidden
units to use, how many units there should be in each layer, and what type of
non-linearities should be used, etc.

For a particular ANN the search for a good set of weights for a given training
set is complicated by the fact that there can be local optima in the optimization
problem; this can cause significant difficulties in practice. In contrast for Gaus-
sian process regression and classification the posterior for the latent variables
is convex.

One approach to the problems raised above was to put ANNs in a BayesianBayesian neural
networks framework, as developed by MacKay [1992a] and Neal [1996]. This gives rise
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to posterior distributions over weights for a given architecture, and the use of
the marginal likelihood (see section 5.2) for model comparison and selection.
In contrast to Gaussian process regression the marginal likelihood for a given
ANN model is not analytically tractable, and thus approximation techniques
such as the Laplace approximation [MacKay, 1992a] and Markov chain Monte
Carlo methods [Neal, 1996] have to be used. Neal’s observation [1996] that
certain ANNs with one hidden layer converge to a Gaussian process prior over
functions (see section 4.2.3) led us to consider GPs as alternatives to ANNs.

MacKay [2003, sec. 45.7] raises an interesting question whether in moving
from neural networks to Gaussian processes we have “thrown the baby out with
the bathwater?”. This question arises from his statements that “neural networks
were meant to be intelligent models that discovered features and patterns in
data”, while “Gaussian processes are simply smoothing devices”. Our answer
to this question is that GPs give us a computationally attractive method for
dealing with the smoothing problem for a given kernel, and that issues of feature
discovery etc. can be addressed through methods to select the kernel function
(see chapter 5 for more details on how to do this). Note that using a distance
function r2(x,x′) = (x− x′)>M(x− x′) with M having a low-rank form M =
ΛΛ>+Ψ as in eq. (4.22), features are described by the columns of Λ. However,
some of the non-convexity of the neural network optimization problem now
returns, as optimizing the marginal likelihood in terms of the parameters of M
may well have local optima.

As we have seen from chapters 2 and 3 linear regression and logistic regres- linear and logistic
regressionsion with Gaussian priors on the parameters are a natural starting point for

the development of Gaussian process regression and Gaussian process classifi-
cation. However, we need to enhance the flexibility of these models, and the
use of non-degenerate kernels opens up the possibility of universal consistency.

Kernel smoothers and classifiers have been described in sections 2.6 and kernel smoothers and
classifiers7.2.1. At a high level there are similarities between GP prediction and these

methods as a kernel is placed on every training example and the prediction is
obtained through a weighted sum of the kernel functions, but the details of
the prediction and the underlying logic differ. Note that the GP prediction
view gives us much more, e.g. error bars on the predictions and the use of the
marginal likelihood to set parameters in the kernel (see section 5.2). On the
other hand the computational problem that needs to be solved to carry out GP
prediction is more demanding than that for simple kernel-based methods.

Kernel smoothers and classifiers are non-parametric methods, and consis-
tency can often be obtained under conditions where the width h of the kernel
tends to zero while nhD →∞. The equivalent kernel analysis of GP regression
(section 7.1) shows that there are quite close connections between the kernel
regression method and GPR, but note that the equivalent kernel automatically
reduces its width as n grows; in contrast the decay of h has to be imposed for
kernel regression. Also, for some kernel smoothing and classification algorithms
the width of the kernel is increased in areas of low observation density; for ex-
ample this would occur in algorithms that consider the k nearest neighbours of
a test point. Again notice from the equivalent kernel analysis that the width
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of the equivalent kernel is larger in regions of low density, although the exact
dependence on the density will depend on the kernel used.

The similarities and differences between GP prediction and regularizationregularization networks,
splines, SVMs and
RVMs

networks, splines, SVMs and RVMs have been discussed in chapter 6.

7.6 Appendix: Learning Curve for the Ornstein-∗
Uhlenbeck Process

We now consider the calculation of the learning curve for the OU covariance
function k(r) = exp(−α|r|) on the interval [0, 1], assuming that the training x’s
are drawn from the uniform distribution U(0, 1). Our treatment is based on
Williams and Vivarelli [2000].8 We first calculate Eg(X) for a fixed design, and
then integrate over possible designs to obtain Eg(n).

In the absence of noise the OU process is Markovian (as discussed in Ap-
pendix B and exercise 4.5.1). We consider the interval [0, 1] with points x1 <
x2 . . . < xn−1 < xn placed on this interval. Also let x0 = 0 and xn+1 = 1. Due
to the Markovian nature of the process the prediction at a test point x depends
only on the function values of the training points immediately to the left and
right of x. Thus in the i-th interval (counting from 0) the bounding points are
xi and xi+1. Let this interval have length δi.

Using eq. (7.24) we have

Eg(X) =
∫ 1

0

σ2
f (x) dx =

n∑
i=0

∫ xi+1

xi

σ2
f (x) dx, (7.35)

where σ2
f (x) is the predictive variance at input x. Using the Markovian property

we have in interval i (for i = 1, . . . , n− 1) that σ2
f (x) = k(0)− k(x)>K−1k(x)

where K is the 2× 2 Gram matrix

K =
(

k(0) k(δi)
k(δi) k(0)

)
(7.36)

and k(x) is the corresponding vector of length 2. Thus

K−1 =
1

∆i

(
k(0) −k(δi)
−k(δi) k(0)

)
, (7.37)

where ∆i = k2(0)− k2(δi) and

σ2
f (x) = k(0)− 1

∆i
[k(0)(k2(xi+1−x)+k2(x−xi))−2k(δi)k(x−xi)k(xi+1−x)].

(7.38)
Thus ∫ xi+1

xi

σ2
f (x)dx = δik(0)− 2

∆i
(I1(δi)− I2(δi)) (7.39)

8CW thanks Manfred Opper for pointing out that the upper bound developed in Williams
and Vivarelli [2000] is exact for the noise-free OU process.
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where

I1(δ) = k(0)
∫ δ

0

k2(z)dz, I2(δ) = k(δ)
∫ δ

0

k(z)k(δ − z)dz. (7.40)

For k(r) = exp(−α|r|) these equations reduce to I1(δ) = (1− e−2αδ)/(2α),
I2(δ) = δe−2αδ and ∆ = 1− e−2αδ. Thus∫ xi+1

xi

σ2
f (x)dx = δi −

1
α

+
2δie−2αδi

1− e−2αδi
. (7.41)

This calculation is not correct in the first and last intervals where only x1

and xn are relevant (respectively). For the 0th interval we have that σ2
f (x) =

k(0)− k2(x1 − x)/k(0) and thus∫ x1

0

σ2
f (x) = δ0k(0)− 1

k(0)

∫ x1

0

k2(x1 − x)dx (7.42)

= δ0 −
1
2α

(1− e−2αδ0), (7.43)

and a similar result holds for
∫ 1

xn
σ2

f (x).

Putting this all together we obtain

Eg(X) = 1− n

α
+

1
2α

(e−2αδ0 + e−2αδn) +
n−1∑
i=1

2δie−2αδi

1− e−2αδi
. (7.44)

Choosing a regular grid so that δ0 = δn = 1/2n and δi = 1/n for i =
1, . . . , n − 1 it is straightforward to show (see exercise 7.7.4) that Eg scales as
O(n−1), in agreement with the general Sacks-Ylvisaker result [Ritter, 2000, p.
103] when it is recalled that the OU process obeys Sacks-Ylvisaker conditions
of order 0. A similar calculation is given in Plaskota [1996, sec. 3.8.2] for the
Wiener process on [0, 1] (note that this is also Markovian, but non-stationary).

We have now worked out the generalization error for a fixed design X.
However to compute Eg(n) we need to average Eg(X) over draws of X from the
uniform distribution. The theory of order statistics David [1970, eq. 2.3.4] tells
us that p(δ) = n(1−δ)n−1 for all the δi, i = 0, . . . , n. Taking the expectation of
Eg(X) then turns into the problem of evaluating the one-dimensional integrals∫
e−2αδp(δ)dδ and

∫
δe−2αδ(1 − e−2αδ)−1p(δ)dδ. Exercise 7.7.5 asks you to

compute these integrals numerically.

7.7 Exercises

1. Consider a spline regularizer with Sf (s) = c−1|s|−2m. (As we noted in
section 6.3 this is not strictly a power spectrum as the spline is an im-
proper prior, but it can be used as a power spectrum in eq. (7.9) for the
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purposes of this analysis.) The equivalent kernel corresponding to this
spline is given by

h(x) =
∫

exp(2πis · x)
1 + γ|s|2m

ds, (7.45)

where γ = cσ2
n/ρ. By changing variables in the integration to |t| =

γ1/2m|s| show that the width of h(x) scales as n−1/2m.

2. Equation 7.45 gives the form of the equivalent kernel for a spline regular-
izer. Show that h(0) is only finite if 2m > D. (Hint: transform the inte-
gration to polar coordinates.) This observation was made by P. Whittle
in the discussion of Silverman [1985], and shows the need for the condition
2m > D for spline smoothing.

3. Computer exercise: Space n + 1 points out evenly along the interval
(−1/2, 1/2). (Take n to be even so that one of the sample points falls at 0.)
Calculate the weight function (see section 2.6) corresponding to Gaussian
process regression with a particular covariance function and noise level,
and plot this for the point x = 0. Now compute the equivalent kernel cor-
responding to the covariance function (see, e.g. the examples in section
7.1.1), plot this on the same axes and compare results. Hint 1: Recall
that the equivalent kernel is defined in terms of integration (see eq. (7.7))
so that there will be a scaling factor of 1/(n+ 1). Hint 2: If you wish to
use large n (say > 1000), use the ngrid method described in section 2.6.

4. Consider Eg(X) as given in eq. (7.44) and choose a regular grid design X
so that δ0 = δn = 1/2n and δi = 1/n for i = 1, . . . , n−1. Show that Eg(X)
scales as O(n−1) asymptotically. Hint: when expanding 1− exp(−2αδi),
be sure to extend the expansion to sufficient order.

5. Compute numerically the expectation of Eg(X) eq. (7.44) over random
designs for the OU process example discussed in section 7.6. Make use
of the fact [David, 1970, eq. 2.3.4] that p(δ) = n(1− δ)n−1 for all the δi,
i = 0, . . . , n. Investigate the scaling behaviour of Eg(n) w.r.t. n.
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